
Fantasia: Synthesising Recursive Functions
Without Trace-complete Examples

Zac Garby
University of Nottingham

psyzg5@nottingham.ac.uk

Graham Hutton
University of Nottingham

graham.hutton@nottingham.ac.uk

ABSTRACT
Program synthesis is the art of deriving a program, auto-

matically, from a specification. Often, this specficiation is a
set of input-output examples.

Many existing example-directed synthesis techniques,
however, struggle to synthesise recursive functions without
“strategically provided”, or trace complete, examples fully
describing recursive behaviour.

In this paper, we introduce a novel approach to analyt-
ical example-based synthesis, wherein the synthesiser uses
thunks to approximate function behaviour during synthesis.
We find that this substantially reduces the required input
specification size for many synthesis problems.

Keywords
Program Synthesis, Functional Programming, Example-

directed Synthesis, Thunks.

1. INTRODUCTION
Programming is often thought of as a creative activity,

but in a lot of cases it doesn’t feel this way. In any pro-
gram, there will inevitably be a scattering of simple but
tedious functions, requiring little thought but monotonous
data manipulation. In these situations, program synthesis
becomes a valuable tool.

Similarly, program synthesis can be applied when a
complex function is required and the programmer—perhaps
a beginner, perhaps an expert who has just had a long
day—would prefer not to implement the function them-
selves. Here, it may be easier to give a list of input-output
examples, and to simply allow the synthesiser to extrapolate
a working program from these. In these cases, it may be
useful to synthesise just part of the function, leaving “holes”
for the programmer to fill in.

Synthesis based on sets of input-output examples is pow-
erful, because it is a paradigm which is easily understood by
both machines and by humans. Example-based techniques
provide plenty of expressive power to the humans interact-
ing with the system, while retaining enough structure that
the synthesis can proceed in a logical, analytical, fashion.

This form of synthesis also, in most implementations,
provides “correct” solutions: the program produced by the
machine is correct with respect to the examples provided
(though not necessarily to the human’s intention—we come
back to this problem later on). This is opposed to some
modern techniques based on language models (see [7],
[14], or [15] for examples), where the resulting program

can potentially disagree with the specification. This can
be dangerous if the discrepancy is unobvious, and so we
concern ourselves only with correct techniques.

A common problem with example-directed synthesis tech-
niques is that, to generate recursion functions, they require
the examples to be trace complete. That is, input exam-
ples must be given for each recursive call down to the base
case (see [1] or [16] for further discussion). We discuss this
problem further in Section 2.

Another, more minor, issue with similar techniques is that
they are unable, generally, to produce auxiliary functions. In
many cases (e.g. reverse), solutions using auxiliary func-
tions can be more efficient (i.e. worker/wrapper [6]). Typi-
cally, example-directed analytical synthesis produces a single
function, losing these benefits.

In Section 3, we propose a novel approach to synthesis of
recursive functional programs which solves these two prob-
lems. We implement this in a new system which we name
Fantasia (see Section 4).

1.1 Examples
To begin, we consider an example: the function stutter,

which duplicates each element in a list. For example,
stutter [1, 2] would give us [1, 1, 2, 2]. We can specify
this function in terms of a type and two examples.

stutter : List a → List a
{ [] → []
, [1, 2] → [1, 1, 2, 2] }

The techniques we describe in the remainder of this paper
can take this specification and automatically produce the
following function1:

stutter xs = case xs of
Nil → []
Cons x xs' → Cons x (Cons x (stutter xs'))

It’s interesting to note here that the system has synthesised
a recursive function without being provided with every re-
cursive case down to the base case, meaning that it was able
to“guess”the behaviour of the function while simultaneously
synthesising it.

As another example, consider the specification:

1In the code examples in this paper, as well as for the im-
plementation later on, we use the Fugue programming lan-
guage. Fugue is not published, but please see e.g. https://
github.com/zac-garby/diss/blob/master/fugue/eg.fugue for
more information.

https://github.com/zac-garby/diss/blob/master/fugue/eg.fugue
https://github.com/zac-garby/diss/blob/master/fugue/eg.fugue

head : List a → a
{ [1, 2, 3] → 1 }

The examples don’t give the synthesiser a clue as to what
should be done for the empty list, and so the output is a
partial program:

head xs = case xs of
Nil → ?
Cons x xs' → x

The synthesiser has used a hole, indicating that it “doesn’t
know”, and prompting the user to fill in this part themselves.

1.2 Overview
In this paper, we give a brief overview of the current work

in this area (Section 2), then we discuss our new techniques
to solve some existing problems (Section 3). We discuss the
practical considerations of our technique as demonstrated in
our reference implementation, titled Fantasia, in Section 4.
In Section 5, we analyse our results, and then in Section 5.1
we fantasise about potential uses of these synthesis tech-
niques, as well as possible improvements and future work.

1.3 Contributions
There is significant work already on example-directed syn-

thesis of functional programs, which we discuss in Section 2.
This paper builds upon this body of work with the following
main contributions:

1. We identify—and propose solutions to—two major
problems with certain otherwise powerful and elegant
techniques in the literature, specifically:

(a) the synthesis of recursive programs, and

(b) the synthesis of auxiliary functions.

2. We extend these solutions with the ability to synthe-
sise partial programs (i.e. programs which may contain
holes).

3. We also provide support for polymorphic functions—
something which many of these existing techniques do
not, but which provides many tangible benefits.

2. RELATED WORK
Hofmann [9] identifies two broad approaches to program

synthesis which are applicable to functional programming:
analytical and enumerative. These are neither mutually ex-
clusive nor are they exhaustive (most notably they do not
cover machine-learning techniques), but they are a useful
taxonomy of synthesis techniques nonetheless

2.1 Enumerative
In enumerative approaches to program synthesis, an in-

finite stream of possible programs is constructed by some
means, and the emitted programs are checked in order until
a program is found which matches the specification.
An example of this is SnipPy ([5], [4]), which uses a fairly

straightforward“generate-and-test”synthesiser. The synthe-
siser enumerates all possible programs generated by the lan-
guage’s grammar, and as a result can only synthesise pro-
grams “of up to height 3 (zero-based)” within a timeout of

seven seconds. “The astronomical size of the search space”
is the primary challenge of all synthesisers, and especially
the enumerative kind. SnipPy attempts to improve perfor-
mance using observational equivalence ([1]) to narrow the
search.

Not all enumerative techniques are so straightforward. For
example, [8] describes a complex system using reachability
in a network of types to either accept or refute candidate
solutions. They use this to implement a system, Hoogle+,
which aims to suggest compositions of functions which meet
some specification, similar to its namesake Hoogle, [13].
A further example of a purely enumerative approach to

program synthesis is MagicHaskeller, a web-based [12]
synthesis engine for Haskell. MagicHaskeller is based on
techniques described in [3] for systematically constructing a
stream of lambda expressions, as well as [11] which discusses
how to remove options which are equivalent.

In general, enumerative techniques are powerful, as they
can trivially make use of existing components in the environ-
ment (e.g. pre-defined functions, or user-provided chunks
of code). Additionally, they are easy to understand and,
for simpler enumerative models, relatively straightforward
to implement, which makes them suitable for projects like
SnipPy ([5], [4]) which are focussed less on the synthesis
itself but more on human-synthesiser interaction.

Enumerative techniques, however, tend to be quite slow—
especially relative to analytical techniques. This is because,
in general, they are not moving “towards” a solution, but
rather trying many possibilities with the hopes that they will
“stumble upon” their goal (to anthropomorphise slightly).

For many applications, speed is not of the utmost impor-
tance, but real-time synthesis (i.e. results provided essen-
tially instantaneously to the programmer) can lead to many
interesting interaction paradigms.

2.2 Analytical
The other main form of program synthesis we consider, as

per Hofmann’s taxonomy, is the analytical approach. Here,
the synthesiser takes a more regimented approach, analysing
the examples and building up, piece by piece, programs
which we know will agree with the examples. The main
difference is that no evaluation or testing of solutions takes
place, as we never even consider “incorrect” programs.

As a result, analytical synthesis techniques tend to be
significantly faster than enumerative techniques. This is
because they “seek out” their goals rather than hope they
stumble upon them (as enumerative techniques are forced
to). Performance of synthesis is important in and of itself—
the user would like to not wait too long if at all possible—
but additionally, if synthesis can be done in real-time (i.e.
essentially instantly as the user enters examples) that un-
locks a conversational interaction paradigm which is clunky
or impossible otherwise.

Furthermore, the performance benefits and “seeking” be-
haviour of analytical synthesisers allow them to generally
produce larger programs, while enumerative techniques are
often more amenable to generating snippets ([5]) or small
compositions of existing functions ([8]).

An example of an analytical synthesiser is described in
[16]. Similar to our technique, they synthesise programs
by iteratively applying rules. Their synthesiser takes a
goal type, a set of examples, and any required auxiliary—
component—functions. This differs to our technique in that

we do not allow any external library functions to be used, a
point which we discuss further in Section 5.

Another analytical technique which shares similarities to
ours is Igor 2 [10]. The technique described in this paper,
in fact, combines analytical “seeking” techniques with enu-
merative “generate-and-test”, leading to strong results. This
paper also proposes the use of auxiliary functions during syn-
thesis, something which we explore further. Our approach
differs in how we synthesise recursion; also, Igor 2 does not
make use of type information.

It is worth noting that analytical techniques, while very
effective for languages with strong type systems (like Haskell
or Fugue), are often less effective than enumerative tech-
niques for languages such as Python with weaker type sys-
tems. This is because the “seeking” nature of analytical al-
gorithms often relies on type information to guide its path
through the search space.

We choose to take a primarily analytical approach to syn-
thesis in this paper.

2.3 Machine Learning
The final class of synthesis techniques we consider are

those based on machine learning. While we do not use any
machine learning in our approach, it is worth discussing the
reasons why we choose not to.

Machine learning systems aim to generalise a set of input
examples into a model which can produce related output for
unseen input examples. This sounds a lot like what we’re
aiming for with program synthesis, so we would be remiss
if we didn’t consider them. Furthermore, machine learning
systems have recently ([7], [15], [14]) demonstrated impres-
sive capabilities for exactly that: synthesising programs.

These systems have the benefit that generally they syn-
thesise based on natural language specifications (e.g. “write
a function which generates prime numbers”) rather than ex-
amples. This, in many ways, leads to a more natural and in-
tuitive interaction with users. These systems can also learn
patterns and idioms from existing code, and as a result can
generally synthesise a wider range of programs.

Machine learning systems, however, have their drawbacks.
Firstly, and perhaps most worryingly, they provide no guar-
antee of correctness. Systems such as Copilot [7] show
seemingly impressive outputs, but if a user is subsequently
forced to verify the generated program manually, the time
gained by not writing it is negated.

Additionally, machine learning algorithms tend to be
extremely resource intensive, due to their implementation
as—nowadays—typically large language models. This means
that a user has to either rely on an external server (leading
to privacy concerns, latency, and sometimes subscription
costs) or run the systems locally and accept that the
synthesis will be slow or use up a large portion of their
computer’s memory.

3. OUR TECHNIQUE
In this section, we present our novel techniques for

example-directed synthesis of functional programs. This is
the main contribution of this paper.

As discussed, we take an analytical approach: our algo-
rithm gradually builds up a working program by analysing
the relevant examples at each point and considering all pos-
sible continuations of the program to satisfy these examples.

3.1 Worked Example
To make things less abstract, we begin by running through

a complete example, from start to finish, explaining the al-
gorithm as we go.

For this, we return to the de facto example of the stutter
function, with two examples:

stutter : List a → List a
{ [] → []
, [1, 2] → [1, 1, 2, 2] }

Synthesis proceeds by considering each of a set of possible
rules to apply. We cover each of these rules in detail in
Section 3.2, but for now we mention them as they apply.

The applicable rule here is R-RecCase: a rule which in-
troduces a case-split where each case may or may not make a
recursive call before proceeding. R-RecCase produces the
following definition:

stutter xs = case xs of
Nil → f xs
Cons y ys → let h = stutter ys

in g xs y ys h

Here is the first notable difference between our technique
and others: we, at each synthesis step, invariably emit an
entire well-defined function (in this case stutter). Instead
of synthesising deeper and deeper expressions, we move the
logic of i.e. synthesising case branches to auxiliary functions
(here f and g).

To each of the auxiliary functions, we provide a full list of
all visible variable names, making this in some ways equiv-
alent to similar techniques (e.g. [16]), but with the added
benefit of synthesising auxiliary functions—something not
possible in most similar approaches—becoming a triviality.

The second case, Cons, utilises a recursive call to stutter.
The arguments for this recursive call are selected from the
pattern-matched constructor, in this case just ys.
Synthesis proceeds by completing the definitions of each

now-required function. We start with f:

f : List a → a
{ [] → [] }

The case-split in the definition of stutter has narrowed
down the set of examples, so that f now has just one. We
can now make use of the R-Trivial rule, which synthesises
a function when there is some argument which, for each ex-
ample, is trivially the return-value we want. In this case:

f xs = xs

No additional auxiliary functions were introduced by this
definition, and so we proceed to synthesising g.

g : List a → a → List a → List a → List a
{ [1, 2], 1, [2], <stutter [2]> → [1, 1, 2, 2] }

The other notable contribution of this work is shown here in
the fourth argument to the solitary example: <stutter [2]>.
The < ... > notation signifies that this argument’s value is a
thunk : an expression which hasn’t yet been fully evaluated.
In this case, this comes from the recursive call—since we are
still synthesising the function, we cannot fully evaluate this
argument yet.

Thunks allow us to synthesise recursive functions without
worrying about that. We “kick the problem down the road”,

so to speak, and just keep the argument evaluated as far as
it can go. The details can come later.

Before proceeding with synthesis, we note that this argu-
ment can in fact be evaluated further, since we do in fact
have a definition of stutter. This is an application of the
R-ThunkEval rule.

stutter [2]
(by def. stutter)

= let h = stutter [] in g [2] 2 [] h
(by def. stutter)

= let h = f [] in g [2] 2 [] h
(by def. f)

= let h = [] in g [2] 2 [] h
(by beta-reduction of let)

= g [2] 2 [] [].

We can update the examples given to g thus:

g : List a → a → List a → List a → List a
{ [1, 2], 1, [2], <g [2] 2 [] []>
→ [1, 1, 2, 2] }

Synthesis proceeds now by a new rule, R-Constr. This rule
applies whenever all examples’ outputs are, at the top-level,
an instance of the same constructor (in this case Cons).

g xs y ys h = Cons (i xs y ys h) (j xs y ys h)

As before, we consider the newly introduced auxiliary func-
tions, i and j, in order. But first, now g is fully defined, we
can advance our thunk argument one step further:

g [2] 2 [] []
(by def. g)

= Cons (i [2] 2 [] []) (j [2] 2 [] []).

Now, we can move on to synthesising the two functions,
firstly i:

i : List a → a → List a → List a → List a
{ [1, 2], 1, [2],

<Cons (i [2] 2 [] []) (j [2] 2 [] [])>
→ 1 }

The example here was produced by keeping the inputs the
same, while deconstructing the output value [1, 1, 2, 2]
into its constituents 1 and 1, 2, 2. These constituent parts,
or constructor arguments, are passed to their respective aux-
iliary functions as the new desired output.

Again, R-Trivial applies here, giving us:

i xs y ys h = y

Next we move onto j, but first, we can update our thunk a
little further:

Cons (i [2] 2 [] []) (j [2] 2 [] [])
(by def. i)

= Cons 2 (j [2] 2 [] []).

Now,

j : List a → a → List a → List a → List a
{ [1, 2], 1, [2], <Cons 2 (j [2] 2 [] [])>
→ [1, 2, 2] }

At this point, we can apply R-Constr once more, yielding:

j xs y ys h = Cons (k xs y ys h) (l xs y ys h)

The synthesis of k comes next, and since it is identical to i,
I will leave the explicit derivation aside for now. It proceeds
with R-Trivial, giving:

k xs y ys h = y

This allows us to advance our thunk again, since:

Cons 2 (j [2] 2 [] [])
(by def. j)

= Cons 2 (Cons (k [2] 2 [] []) (l [2] 2 [] []))
(by def. k)

= Cons 2 (Cons 2 (l [2] 2 [] [])).

The case of l is then much more interesting, as the examples
are now:

l : List a → a → List a → List a → List a
{ [1, 2], 1, [2],

<Cons 2 (Cons 2 (l [2] 2 [] []))>
→ [2, 2] }

Something has happened: our thunk, the final argument in
our example, has been evaluated further, and it now looks
an awful lot like the desired output from this function.

To make this more precise, we can say that the thunk,
Cons 2 (Cons 2 (l [2] 2 [] [])), can unify with [2, 2],
since [2, 2] is nothing more than Cons 2 (Cons 2 Nil).

As a result, we can use another rule, R-Unify, to explic-
itly unify these two expressions, yielding the definition:

l xs y ys h = m xs y ys h

Along with a new auxiliary function m, specified as:

m : List a → a → List a → List a → List a
{ [1, 2], 1, [2], [2, 2] → [2, 2]
, [2], 2, [], [] → [] }

We can see that l has essentially been replaced by m, but
with an extra example appended. This extra example is
referred to as the unifying example, and provides the means
to fully evaluate the thunk:

Cons 2 (Cons 2 (l [2] 2 [] []))
(by def. l)

= Cons 2 (Cons 2 (m [2] 2 [] []))
(by unifying example of m)

= Cons 2 (Cons 2 []).

Finally, synthesis can proceed trivially, using R-Trivial on
the fourth argument h (which was originally our recursive
binding), giving us a closed-form definition of m without in-
troducing any further functions to synthesise.

m xs y ys h = h

Synthesis of stutter can terminate here, since there is no
more work to be done. In the process, we have accumulated
a library of small functions—the building blocks of our pro-
gram:

stutter xs = case xs of
Nil → f xs
Cons y ys → let h = stutter ys

in g xs y ys h
f xs = xs

g xs y ys h = Cons (i xs y ys h) (j xs y ys h)
i xs y ys h = y
j xs y ys h = Cons (k xs y ys h) (l xs y ys h)
k xs y ys h = y
l xs y ys h = m xs y ys h
m xs y ys h = h

We could, of course, leave it here and call the program done:
indeed, entering these eight functions into the Fugue REPL
would give us a working implementation of stutter, but this
is clearly an unsatisfying conclusion.

The final step of synthesis is clean-up. We begin by folding
as many functions as we can into one, starting from the root.
This gives us the single function,

stutter xs = case xs of
Nil → xs
Cons y ys → let h = stutter ys

in Cons y (Cons y h)

We can make further small transformations, such as β-
reduction on the let expression, which results in our final
synthesised function:

stutter : forall a . List a → List a
stutter xs = case xs of

Nil → xs
Cons y ys → Cons y (Cons y (stutter ys))

And this is exactly what we were looking for! This algo-
rithm has therefore successfully generalised the two initial
examples into a function which works correctly for any list
given to it. Furthermore, it’s polymorphic, so it will work
on lists of types it has never even seen.

3.2 Synthesis Rules
As discussed in the previous section, our technique is

based on a set of rules which may or may not be applicable
at any given moment during synthesis.

Each of these rules analyses a set of examples and pro-
duces an entire function along with a set of new auxiliary
functions on which it depends, and which will need to be
synthesised subsequently.

Our algorithm can therefore be explained in terms of these
rules, leaving the specifics of when—and in what order—
they should be applied abstract for now. We come onto
these details in Section 4. For now, we consider the the-
oretical setting where “all” applicable rules are applied in-
stantaneously at all times, as a formal system rather than
something which can be directly implemented.

We present these rules in terms of the Fugue program-
ming language, but, it being a relatively standard example of
an ML-style functional programming language (if we ignore
holes), these techniques may equally apply to most similar
languages with minimal changes.

In general, a synthesis problem looks like this:

f : τ1 → τ2 → · · · → τn
{ x1,1, x1,2, · · · , x1,n−1 ⇒ y1
; x2,1, x2,2, · · · , x2,n−1 ⇒ y2
...
; xm,1, xm,2, · · · , xm,n−1 ⇒ ym }

In other words, we are looking for a function, f , of the type
τ1 → τ2 → · · · → τn. The synthesised function must satisfy

the m given examples; each example i has n− 1 inputs and
a desired output denoted yi.

Rule 1: R-Trivial.
Perhaps the simplest rule is R-Trivial. It concerns the

case when all of the provided examples already contain, as
one of their input values, the desired output value. When
multiple examples are present, the matching argument must
be in the same position across each example.

If applicable, this rule produces a function which simply
returns the value of one of its arguments, unmodified. No
further functions are introduced.

In general, R-Trivial can be written using the following
notation:

∃1 ≤ i < n, ∀j, xj,i = yj

f a1 a2 · · · an−1 = ai

(R-Trivial)

This states that, if all of the arguments at position i agree
with the desired output, we synthesise the function below,
named f .

Note that here, and for the rest of this section, xj,i, yj ,
and τi refer to the general synthesis problem above.

Rule 2: R-Constr.
The second rule is R-Constr, which deals with the case

where all examples’ outputs are formed by the same data
constructor. In this case, we would like to apply this con-
structor, synthesising an auxiliary function for each con-
structor argument.

In general, we can define R-Constr for some generalised
constructor C : τC

1 → τC
2 → · · · → τC

k as:

∀ i ∈ [1,m], yi = C ci,1 ci,2 · · · ci,k,

τC
k ⊑ τn,

f ′
i : τ1 → τ2 → · · · → τC

i

{ x1,1, · · · , x1,n−1 ⇒ c1,i
; x2,1, · · · , x2,n−1 ⇒ c2,i
...
; xm,1, · · · , xm,n−1 ⇒ cm,i }

f a1 · · · an−1 = C (f ′
1 a1 · · · an−1)

(f ′
2 a1 · · · an−1)

...
(f ′

k a1 · · · an−1)

(R-Constr)

A little harder to read than R-Trivial, this rule says that
if we have:

• for each example, the output is some instantiation of
the constructor C,

• the type which the constructor constructs—τC
k —is the

same as (or more general than) the return type of f ,
and finally,

• we can synthesise an auxiliary function, f ′
i , for each

argument i of the constructor, mapping the existing
examples’ inputs to the respective constructor argu-
ments,

then we can synthesise f as the application of C to these
auxiliary functions. This has the effect of “opening up” a
constructor application.

Rule 3: R-Case.
The third rule is in a sense the opposite of R-Constr,

as it allows us to deconstruct constructor values in exam-
ple inputs and delegate to a different auxiliary function de-
pending on which constructor we find. It is one of the two
branching rules—along with R-RecCase—which introduce
conditional execution in the form of case splits.

To define it, first suppose without loss of generality that
we are considering just one polymorphic data-type, T , de-
fined by ||T || constructors and z type parameters. Each con-
structor Ct has kt arguments, and can therefore be written
as:

Ct : ∀a1 · · · az . τT
t,1 → · · · → τT

t,kt
→ T α1 · · · αz

Here, τT
t,ki is the type of the ith argument of the con-

structor Ct, and each constructor returns the same type:
T α1 · · · αz.

We can now define the rule R-Case for this type, T , as
shown below.

∃1 ≤ i < n,

Ct : ∀a1 · · · az . τT
t,1 → · · · → τT

t,kt
→ T α1 · · · αz,

T α1 · · · αz ⊑ τi,

σ(T α1 · · · αz) = τi,

f ′
j : τ1 → · · · → τn−1 → σ(τT

j,1) → · · · → σ(τT
j,kj

) → τn
{ xl,1, · · · , xl,n−1, c1, · · · , ckj ⇒ yl
| xl,i = Cj c1 · · · ckj for 1 ≤ l ≤ m }

f a1 a2 · · · an−1 = case ai of
C1 b1 · · · bk1 → f ′

1 a1 · · · an−1 b1 · · · bk1 ,
C2 b1 · · · bk2 → f ′

2 a1 · · · an−1 b1 · · · bk2 ,
...

...
C||T || b1 · · · bk||T || → f ′

||T || a1 · · · an−1 b1 · · · bk||T ||

(R-Case)

Here, ai is the argument to split on. σ is a substitution that
unifies the data-type T with the argument being split on,
τi. This is important in the presence of polymorphism, since
otherwise the subsequent auxiliary functions f ′

j will be too
general, which could lead to incorrectly typed programs. We
know that such a substitution must exist, because we make
the assertion that this data-type is at least as general as the
scrutinee’s type, τi.

After a case-split, the subsequence functions are provided
with all previous function arguments, plus all of the argu-
ments from their respective constructor.

The examples given to these functions for further synthesis
are taken as a subset of the examples of f : all those which
have, as the ith input, an instance of some constructor of
the type T . Each example is augmented with extra input
arguments—the corresponding constructor’s arguments.

Rule 4: R-RecCase.
The fourth rule, R-RecCase, is similar to R-Case. In

fact, the latter can be seen as a special case of the former,
but we keep both as R-Case leads to easier reasoning and
simpler derivations for some problems.

In our formulation, R-RecCase is the only way to intro-
duce recursion into functions. It constructs a case analysis
against one argument, but differs from R-Case in that the
bodies of some cases may introduce very specific recursive
bindings. These bindings consist of a let expression, bind-

ing a call to the function being synthesised—f—applied to
some combination of the case constructor’s arguments. The
value of this call, at this point a thunk, is then given as a
further argument to the auxiliary function for that case.

We can define the rule R-RecCase similarly to R-Case:

∃1 ≤ i < n,

Ct : ∀a1 · · · az . τT
t,1 → · · · → τT

t,kt
→ T α1 · · · αz,

T α1 · · · αz ⊑ τi, σ(T α1 · · · αz) = τi,

kt = 0, ∀t ≤ ϵ, ϵ ≥ 0,

f ′
j : τ1 → · · · → τn−1 → τn
{ xl,1, · · · , xl,n−1 ⇒ yl
| xl,i = Cj for 1 ≤ l ≤ m }, if j ≤ ϵ

g′j : τ1 → · · · → τn−1 → σ(τT
j,1) → · · · → σ(τT

j,kj
) → τn → τn

{ xl,1, · · · , xl,n−1, c1, · · · , ckj , ⟨f a′
j,1 · · · a′

j,n−1|f⟩ ⇒ yl
| xl,i = Cj c1 · · · ckj for 1 ≤ l ≤ m,
where a′

j,p ∈ c1..kj : τp for 1 ≤ p < n }, if j > ϵ

f a1 a2 · · · an−1 = case ai of
C1 →f ′

1 a1 · · · an−1,
...

...
Cϵ →f ′

ϵ a1 · · · an−1,
Cϵ+1 b1 · · · bkϵ+1 →let r = f a′

ϵ+1,1 · · · a′
ϵ+1,n−1

in g′ϵ+1 a1 · · · an−1 b1 · · · bkϵ+1 r,
...

...
C||T || b1 · · · bk||T ||→let r = f a′

||T ||,1 · · · a′
||T ||,n−1

in g′||T || a1 · · · an−1 b1 · · · bk||T || r,

(R-RecCase)

The idea here is that we assume that the set of constructors
C1, C2, · · ·C||T || of T are sorted into two disjoint groups.
The first ϵ constructors in this group are the nullary con-
structors (i.e. those with no arguments, for example Nil).
The remaining constructors have each at least one argument.
We can assume, without loss of generality2, that all con-
structors Ci with 1 ≤ i ≤ ϵ are those with no arguments,
and the rest are those with at least one, forming these dis-
joint sets.

Synthesis for the nullary constructors is identical to the
approach given in R-Case—we synthesise an auxiliary func-
tion, giving it all variables in scope (in this case just the func-
tion’s arguments, as there are no constructor arguments to
add). The new examples are produced by selecting exactly
the examples for which the ith argument is the constructor
in question.

Synthesis for the other constructors—those with some
non-zero number of arguments—proceeds differently. We
synthesise a let expression, which first calls f—the top-level
function being synthesised—on some arguments a′

···. These
arguments are selected from the constructor’s arguments
c1..kj .

Introducing recursion in such a regimented fashion is ad-
vantageous for a number of reasons. Firstly, compared to
the alternative of allowing arbitrary recursive calls, it allows
us to reason more effectively about which examples will be
required, and what the recursive arguments might be. Sec-
ondly, limiting recursive arguments strictly to constructor
arguments allows us to make certain guarantees, most im-

2This is without loss of generality because we can freely
reorder the constructors of a data-type.

portantly that infinite recursion will never occur (because
we only ever call recursively on “smaller” arguments).

The in part of the let expression calls another auxiliary
function, g′, which is provided—as in R-Case—all of the
functions arguments along with the constructor arguments.
Additionally, it gets a final argument, r: the result of the
recursive call we bound in the first part of the let.

The most interesting, and distinctly novel, part of the R-
RecCase rule, is that the value of the recursive call of f
in the new examples is a thunk : ⟨f a′

j,1 a′
j,2 · · · a′

j,n−1|f⟩.
Note here the thunk syntax, ⟨t|D⟩, means an expression—
potentially not fully evaluated—which is “blocked” by some
set of functions D.

The use of a thunk here is necessary since, as we are in
the process of synthesising f , we cannot possibly evaluate
the recursive call all the way to a value. Thus, the thunk
depends on f .
The idea here is that, by use of R-EvalThunk, we can

iteratively evaluate these thunks further and further as more
functions become available. Eventually, they will become
“similar enough” to what we want, and we can use R-Unify
to “collapse” the thunks down into real values. This lets us
“guess”, in a sense, what the examples intended, and so we
can get away with fewer provided examples.

Rule 5: R-Unify.
While R-RecCase introduces thunks into examples, we

need a way to remove them. A thunk is an abstract thing,
and if we want to apply most other rules, such as R-Trivial,
we need concrete—closed form—arguments.

Just as R-RecCase is a generalisation of R-Case, R-
Unify is a generalisation of R-Trivial. It considers one
argument to the function being synthesised and, if this ar-
gument is a thunk (for at least one given example), attempts
to consolidate this thunk with the corresponding output of
the example.
We cover the details of this consolidation, or unification,

of thunks in Section 3.4, but essentially it aims to find struc-
tural similarity between a thunk and a term, identifying a
substitution that could be made to unify the two.
To this end, R-Unify rule looks to replace the function

call blocking evaluation of the thunk (i.e. the function call
which makes the thunk a thunk) with a value. This rule,
therefore, only applies when there is just one dependency.
To keep the synthesis problem equivalent after reducing

the thunk, we are forced to add a further example—the uni-
fying example—which captures the idea of making this sub-
stitution. Since the blocking function will always be (after
exhaustively applying R-EvalThunk) f—the function be-
ing synthesised—the unifying example for each thunk can
be appended onto the end of the existing example list.
We begin by defining a notion of unification, a three-way

relation between closed-form (i.e. fully evaluated) terms,
thunks, and sets of examples:

x ∼ ⟨t|D⟩ ⇒ E

This is read as “the term x unifies with the thunk ⟨t|D⟩,
producing a (potentially empty) set of unifying examples”.
For example, the term [1, 2] unifies with the thunk
<2 :: (2 :: f x)>, yielding the unifying example f x = [].
The relation is defined straightforwardly as:

x ≡ y

x ∼ ⟨y|∅⟩ ⇒ ∅ x ∼ ⟨f y1 · · · yk|f⟩ ⇒ {f y1 · · · yk → x}

1 ≤ i ≤ k xi ∼ ⟨yi|d ⊆ D⟩ ⇒ Ei

C x1 x2 · · · xk ∼ ⟨C y1 y2 · · · yk|D⟩ ⇒ {e ∈ E1,2,··· ,k}

Most notably, an instance of a constructor C can unify with
a thunk-instance of the same constructor, as long as the
arguments can unify pairwise.

Additionally, a term unifies with a thunk if the thunk is
identical (i.e. already evaluated to the same term, but still
held in a thunk).

Finally, any term can unify with a function-call thunk,
since we can simply add an example asserting that the func-
tion, when applied to its arguments, yields the term we’re
looking for.

With this, we can define the R-Unify rule as follows:

1 ≤ i < n,

∀j ∈ [1,m], yj ∼ ⟨xj,i|f⟩ ⇒ {Ej},
f : τ1 → τ2 → · · · → τn

{ x1,1, · · · , ⟨x1,i|f⟩, · · · , x1,n−1 ⇒ y1
...
; xm,1, · · · , ⟨xm,i|f⟩, · · · , xm,n−1 ⇒ y1 }

f : τ1 → τ2 → · · · → τn
{ x1,1, · · · , x1,i−1, y1, · · · , x1,n−1 ⇒ y1
...
; xm,1, · · · , xm,i−1, ym, · · · , xm,n−1 ⇒ ym }
∪ E1,2,··· ,m

(R-Unify)

This rule lets us unify a single argument in each example—
argument i—against the desired output for the example.
The condition that the argument is of the form ⟨xm,i|f⟩
means that xm,i is a thunk which depends only on f .
If this is the case, we can replace each example k with

a new example where the ith argument is replaced by the
desired output, yk. This is the result of the unification: we
can think of this as replacing the function calls in the ith ar-
gument with some value which would make them unify with
the output value, but this—by definition of unification—will
have the same result as just swapping out the whole term.

An important note is that this rule only applies when one
single example, Ej , is“produced”by the unification (for each
existing example). This is not an intrinsic limitation of the
method, but we find in our testing that it is sufficient. Es-
sentially this means that we can only unify thunks with a
single function call in them, and while this could be gener-
alised in future revisions, it is enough for all of the functions
that we are interested in.

Finally, we append each of the unifying examples,
E1,2,··· ,m, to the set of examples. This justifies the substi-
tution we made earlier in the existing examples—replacing
xm,i with ym—as these additional examples assert that this
substitution really is valid.

Rule 6: R-Void.
The sixth rule covers one very specific case—the case

where there are no examples. Such a situation can occur
after a case-split (either from R-Case or R-RecCase), if a
constructor has no associated examples.

In this situation, there are essentially two possible courses
of action. We could“fail”, and say that the synthesis was not
possible at this point; here, we’d backtrack and try another
tactic. However, as we are interested in interactive synthesis

and hence incomplete programs, it makes sense instead to
produce a hole. This way, the programmer is informed that
the synthesis was “not successful”, but they are given the
option to complete it themself.

This rule is defined very simply as:

m = 0

f a1 a2 · · · an−1 = ?
(R-Void)

Here m, as before, is the number of examples; also, ? is used
in the Fugue language’s syntax to denote a hole.

A hole is an interactive language feature through which
the programmer can explore possible fill options, and the
Fugue interactive REPL will suggest relevant options.

We have to be careful about introducing holes, since in a
sense they could“always”apply (in Fugue, ∀τ. ? : τ). Only
allowing them when there are no examples is a step towards
this, but they would still dominate. We discuss tactics to
temper the use of holes in Section 4.

Rule 7: R-Homo.
Our final rule, R-Homo, provides a route for synthesis

in the case that none of the other rules were applicable.
Sometimes, all of the examples lead to the same output, but
it isn’t clear how their inputs lead to this value. In these
cases, it may be useful to have a way of saying “ignore the
inputs; we just want that output”.

To that end, this rule is applicable whenever all of the
outputs are identical. Notably, this then applies for any
synthesis problem with just one example3. This leads to
potential problems which we return to in Section 4, as this
rule can easily become too “powerful” and dominate.

This rule is defined as:

m > 0

y1 = y2 = · · · = ym

f a1 a2 · · · an−1 = y1

(R-Homo)

This is useful for example when synthesising the length func-
tion, which requires the base-case input [] to produce the
apparently unrelated length 0.

3.3 Other Rules
On top of the synthesis rules defined above, we need some

additional rules to transform examples into other examples
of a slightly different shape so that the synthesis rules apply.
We discuss these rules in this section.

Rule 8: R-EvalThunk.
Firstly, we need a rule for evaluating thunks when new

functions become available during synthesis. In the worked
example (Section 3.1) this was implicitly done between ap-
plying the other synthesis rules, but for completeness we

3Though, it is not applicable in the case of zero examples,
for obvious reasons.

include an explicit rule to do this.

f : τ1 → τ2 → · · · → τn
{ x1,1, · · · , ⟨x1,j | D1⟩, · · · , x1,n−1 ⇒ y1
; x2,1, · · · , ⟨x2,j | D2⟩, · · · , x2,n−1 ⇒ y2
...
; xm,1, · · · , ⟨xm,j | Dm⟩, · · · , xm,n−1 ⇒ ym }

f ′ : τ ′
1 → τ ′

2 → · · · → τ ′
n′

⟨xi,j | Di⟩[f ′] = ⟨x′
i,j | D′

i⟩, ∀1 ≤ i ≤ m

f : τ1 → τ2 → · · · → τn
{ x1,1, · · · , ⟨x′

1,j | D′
1⟩, · · · , x1,n−1 ⇒ y1

; x2,1, · · · , ⟨x′
2,j | D′

2⟩, · · · , x2,n−1 ⇒ y2
...
; xm,1, · · · , ⟨x′

m,j | D′
m⟩, · · · , xm,n−1 ⇒ ym }

(R-EvalThunk)

This rule evaluates, for some argument index i, the respec-
tive argument for each example in a function specification.
These arguments must be thunks to be evaluated, but
if some arguments are fully-evaluated values (i.e. not
thunks), they can be temporarily transformed into thunks
using R-ThunkIntro and R-ThunkErase—evaluating a
fully-evaluated value as if it were a thunk is always possible,
and makes no change to the value itself.

The evaluation of these thunks may be done against any
function, f ′, defined earlier during synthesis. We place the
restriction, however, that all thunks are evaluated against
the same function. This is for practical purposes, though
in theory there is nothing stopping an alternate formation
being devised where each thunk can be evaluated against
a different function. Indeed, we can approximate this be-
haviour with multiple uses of R-EvalThunk anyway.

Rule 9: R-ThunkIntro.
This rule, R-ThunkIntro, along with its “inverse” R-

ThunkErase, are utilities which allow fully-evaluated ar-
guments to be transformed into thunks and fully-evaluated
thunks to be transformed back into regular values. These
are useful not only for applying certain rules which require
all arguments to be thunks (e.g. R-EvalThunk), but also
R-ThunkIntro is one of the two methods (the other being
R-Unify) by which a thunk can be removed.

Firstly, R-ThunkIntro is defined simply as:

xi,j = t, t is a closed term

xi,j = ⟨t | ∅⟩
(R-ThunkIntro)

This rule acts upon one argument (j) of one example (i), and
transforms it—if it is a fully-evaluated term—into a thunk
with no dependents.

Rule 10: R-ThunkErase.
R-ThunkErase, similarly, is defined as:

xi,j = ⟨t | ∅⟩

xi,j = t
(R-ThunkErase)

This rule allows us to collapse a thunk which has no depen-
dents into a regular fully-evaluated term. This is possible
because we know that if a thunk has no dependents that it
must be fully evaluated.

3.4 Thunks
Thunks are a core component of our synthesis technique,

and so we set aside this section to deal with them in more
detail.

Definition.
A thunk, th, is a pair:

th ::= ⟨t | D⟩

The pair consists of a thunk body t and a set of functions on
which the evaluation of t depends.

We can exhaustively define thunk bodies as one of four
possible, very specific, cases. A thunk body, t, is defined as:

t ::= x

| C t1 t2 · · · tk

| f x1 x2 · · · xn

| let y = ⟨t′ | D′⟩ in f x1 x2 · · · xn y

Here, the variables t, t1, t2, · · · range over thunk bodies and
x, y, etc range over terms of the underlying language, in this
case Fugue.

First off, a thunk body can trivially be a term, x. In this
case, the thunk is fully evaluated, but for pragmatic reasons
it is sometimes useful to hold such a value in a thunk anyway.

Secondly, a thunk body can be some constructor applied
to k other thunk bodies.

Alternatively, a thunk body can be a function, f , applied
to some number of terms, not thunks. (In general, since
these functions will typically represent recursive calls, it is
not useful here to allow other thunks as arguments to func-
tion call thunks.)

Finally, a thunk body can be a let expression. The bound
value in the expression is itself a thunk in and of itself (as
opposed to a thunk body), and as such has its own depen-
dents. The body is a function call to, again, some number of
terms, but the final argument is always the variable bound
in the let expression. This type of thunk body arises from
the R-RecLet synthesis rule, and is just general enough to
represent all possible thunks we would need.

Evaluation.
Thunks exist to be evaluated further, with the aim to

eventually have no dependents and thus be able to trans-
form, via R-ThunkErase, into regular non-thunk values.

This evaluation is triggered by the R-EvalThunk rule,
which applies the definition of a single function on which
the thunk depends. How exactly this function is applied
depends on the nature of the thunk’s body, and so we define
this evaluation using the following rules:

th = ⟨x | ∅⟩, f : τ1 → τ2 → · · · → τn
th[f] = th

th = ⟨C t1 t2 · · · tk | D⟩, f : τ1 → τ2 → · · · → τn
th[f] = ⟨C t1[f] t2[f] · · · tk[f] | (D \ {f})⟩

th = ⟨f τ1 · · · xn | {f}⟩, f : τ1 → · · · → τn, xi : τi
th[f] = ⟨f τ1 · · · xn | Df ⟩

th = ⟨g τ1 · · · xn | {f}⟩, f : τ1 → · · · → τn, f ̸= g

th[f] = th

th = ⟨let y = th′ in f x1···n y | D⟩, ⟨x′|∅⟩ = th′[f]

th[f] = ⟨f x1 x2 · · · xn x′ | {f}⟩

th = ⟨let y = th′ in f x1···n y | D⟩, ⟨x′|D′ ̸= ∅⟩ = th′[f]

th[f] = ⟨let y = ⟨x′|D′⟩ in f x1···n y | D′⟩
The first rule here deals with applying a function to a thunk
which is already a fully-evaluated term x. In this case, un-
surprisingly, nothing changes: th[f] = th.

The second rule deals with the application of a function
to a thunk whose body is a constructor applied to k argu-
ments. The thunk depends on the set of functions D, which
may or may not include f . If, then, we apply the function
recursively to each constructor argument, we have our new
thunk body. Then, since we know that f has been applied
throughout the body, we can remove it from the set of de-
pendencies of the thunk.

The third and fourth rules define application of a function
to a thunk which is itself a function call. There are two
cases, either the function at hand is the same function as
the thunk wants to call; or, it is not. If it is, we can call
this function on the thunk’s arguments—this, incidentally,
is one reason why it’s important to keep thunk function-call
arguments as fully-evaluated terms: this way, we can always
call the function just as defined by the underlying language’s
function call mechanics.4

The final two rules define application of a function to a
let-in thunk. We begin by applying the function inside the
thunk, to the sub-thunk th′ which is the bound variable
of the let expression. There are then two cases: either this
thunk no longer has any dependent functions (in which case,
this application reduced it to a value), or it has not reached
this point yet. If the bound variable is now a value, we
can collapse the let expression to its body, passing in the
now-evaluated value as the final argument to the function
call—x′. Otherwise, we are forced to keep the thunk as a
let form, though we update the set of dependent functions.
Either way, we are closer to a value overall.

4. FANTASIA & PRACTICALITIES
We have implemented the techniques described in this pa-

per in an extension of the Fugue compiler, which we refer
to as Fantasia5.

In this section, we discuss some technical details relat-
ing to the implementation of the Fantasia algorithm. We
try for the most part to discuss these things in a language-
agnostic manner (both in terms of the implementation lan-
guage, and the language which we are synthesising).

4.1 Iterative Deepening
We aim to find the smallest possible solution to synthe-

sis for the given set of examples. As a result, we employ a
4In actual fact, our implementation is more complex than
this, but the theory is the same. The difference is that we
represent functions, during synthesis, as one of a set of pos-
sible function bodies. In this case, we are forced to define a
notion of function application for these specific body types.
5A note on naming: Fantasia, like Fugue, is a reference
to a common form of music. A fantasia is an imaginative,
improvisational piece; similar, therefore, to a program syn-
thesiser. Also, many baroque composers—famously J. S.
Bach—wrote a number of pieces titled Fantasia and Fugue.

breadth-first search approach by applying, recursively, the
rules defined in Section 3.2. In this way, we can see the syn-
thesis as producing a parse tree, of sorts, with the synthesis
rules being the grammar’s productions.

We first search for solutions of a “depth” 1, meaning the
depth of—using the grammar analogy again—our parse tree.
We then search for solutions up to a maximum depth 2, then
3, and so on.

This has a number of benefits. Firstly, as explained in [16],
the smallest program is likely to be the one which generalises
best to unseen inputs. This is because a small program
cannot make the trivial solution, which would be a case over
each given example, and so is forced to find some common
structure or pattern in the provided information.

Secondly, this actually allows us to synthesise holes. If we
did not use an iterative deepening procedure, most branches
would eventually reach a point where no examples were left.
This would lead to a solution which, while correct, contains
a large number of holes. The problem here is one of over-
generalisation: we want to prioritise solutions where the syn-
thesiser knew what to do, and these situations are those
where holes are not produced.

Thirdly, and related, this iterative deepening approach
gives us an intuitive way to prioritise “good” rules, while
penalising “bad” rules. We come back to this in more detail
in Section 4.3.

4.2 Multiple Synthesis Results
For most of this paper, we have been discussing synthesis

as if it were a process which takes some examples and emits
exactly one program. This, however, is not always useful.
As much as we would like the first solution to be the best
one, this is sometimes not the case. In these situations, we
would like to be able to ask the synthesiser for the “next
best” solution.

In theory, what we would like to do then is try all ap-
plicable rules at each point during synthesis, and return all
combinations of these. In practice, we implement this using
Haskell’s list monad. As a result, we can write the program
mostly as if it were the single-output form, and the monad
handles the specifics for us.

This is elegant, but we do have some issues if we do just
this. Most notably, we are given some duplicate outputs.
This is for a number of reasons, although most of the dupli-
cates come from the fact that synthesising at depth n will
also yield all results from depths < n. As a solution, we sim-
ply remove any duplicate solutions, although a more elegant
potential solution is discussed in Section 5.1.

A final note on the multiple-solution implementation is
that we are forced to order the application of our rules in
some way. We choose the following order:

1. R-Unify first. If we can unify an argument, it is al-
most always a good idea to do this before proceeding
any further.

2. R-Trivial second. If a solution is trivially found in
one of the function’s arguments, there is usually no
reason not to use it.

3. R-Constr comes before the two case-introduction
rules, because it leads to simpler solutions and is
usually preferable when applicable.

4. R-RecCase is one of the last rules to attempt, since it
adds a lot of complexity which may not be needed. We
try it before the regular R-Case, though, perhaps un-
intuitively since R-Case is a special case of it. We do
this because recursive solutions are often more useful.

5. R-Case the last of the “normal” rules, we attempt a
regular case-split.

6. R-Void only applies if there are zero examples, and
the other rules all need at least one, so this rule could
technically come anywhere without having any effect
on the result.

7. R-Homo is attempted, finally, but only if none of the
other rules were applicable. The specific requirements
for using this rule are discussed in Section 4.3, but we
have to be very careful with its use in general because
it can lead to nonsense solutions quite easily otherwise.

4.3 Prioritising Good Rules
Most rules are “good”, in that we would generally like

to use them whenever they’re applicable. R-Constr, for
example, is never “bad” to apply. R-Void and R-Homo, on
the other hand, can be problematic.

Using R-Void to introduce a hole still leads to a valid
solution, but in some way this solution is “less useful” than
an alternative without a hole, because the user has to do
additional work to complete it.

Similarly, a solution which uses R-Homo will tend to be
generalise more poorly to unseen inputs than one which
doesn’t, and can therefore be seen as “bad”.

As a result, our implementation of Fantasia explores
some methods to avoid these rules unless they are neces-
sary. We take two precautions.

Firstly, we assign these two rules a“cost”, in the sense that
they require more remaining depth in order to be applied.
These costs are adjustable parameters, but we define the
cost of R-Void to be 1 and of R-Homo to be 3. The cost of
other rules, though we don’t explicitly consider this in our
implementation, is 0.

When we go to apply one of these rules, we first check
that we have “enough depth left”. This is related to iter-
ative deepening. If the maximum depth we are willing to
go (during this stage of iterative deepening) is, say, 5, and
we have reached depth 3, we would not be allowed to use
R-Homo. We could, however, use R-Void, since we have 2
remaining depth.

In general, for a current depth d, a cost C, and a maximum
depth dmax, the following condition must hold for a rule to
apply:

d+ C ≤ dmax

This solves our problem in a lot of cases, as essentially now
the solutions which use these two rules are held back by
some amount of depth iterations. As a result, more useful
solutions tend to appear earlier on.

Still, R-Homo is too powerful. It is applicable in too many
cases, and so we additionally say that it can only apply if
no other rule was applicable. These restrictions temper use
of R-Homo sufficiently in our testing. Though they are
arbitrary, the depth cost is parameterised and so can be
customised accordingly.

4.4 Winding & Finalising
The final implementation detail we discuss is the final pro-

cessing of the synthesised functions, for final presentation to
the user.

Winding.
Since our synthesis technique generates excessive auxiliary

functions, we need a cleaning-up step to fold these back into
as few functions as possible. To prevent confusion between
this process and the other meaning of “folding” in functional
programming, we refer to it as “winding”.

Winding a set of functions starts from a root function—in
our case the function which we set out to synthesise—and
proceeds recursively down the tree. Throughout, we keep
track of a state. The state holds the set of functions, which
can be modified whenever necessary.

If, while recursively descending the function body, we find
a function call, there are two cases. If the function being
called is directly recursive (i.e. contains an explicit call to
itself), we simply continue down the tree as before, and ig-
nore this call. Otherwise, we inline the function call, and
recursively unwind again starting from this new function as
the root, before continuing on.

If we find a variable which refers to another function, we
begin a new winding process starting from that variable in-
stead. This new winding process uses the same state, so the
results are combined.

Finally, we are left with hopefully less functions than we
started with. We can remove all functions which are no
longer required (i.e. those to which there is no path of
calls from our root function). It is also worthwhile at this
point removing any unused arguments from auxiliary (i.e.
non-root) functions, since our techniques typically introduce
many arguments which we don’t need.

Simplification.
We then move to simplify the remaining functions, using

some simple rules. This, again, isn’t strictly necessary, but
we find that a few small rules here can help a lot.

Firstly, for any let or let rec expressions, we consider the
three possible cases.

1. The let body contains no references to it’s bound value.
In this case, we replace the entire let expression with
just its body.

2. The let body contains exactly one reference to its bind-
ing. In this case, we replace the let expression with its
body, but we substitute the binding into the body first.

3. The let body contains more than one references to its
binding. In this case, we do nothing.

We also simplify case expressions. If all branches of a
case analysis expression have the same value, we replace the
entire case expression with this value.

5. ANALYSIS & CONCLUSION
Fantasia is an analytical synthesis engine. We could also

refer to it as “reconstructive”, in the sense that (in the vast
majority of cases) the solution comes directly from the struc-
ture of the examples (as opposed to some other analytical
techniques, and most enumerative techniques, which make
more arbitrary guesses at expressions).

These two points result in very fast synthesis compared
to other techniques, even similar ones. In our näıve imple-
mentation in Haskell, with no performance optimisation, we
achieve real-time synthesis up to depths of 6 or 7 (depend-
ing on the nature of the examples). As a result, we are
able to re-run synthesis immediately as the user enters each
character of their examples, without any perceptible delay.

Contrast this to, for example, SnipPy [5] which can syn-
thesise within seven seconds programs “of up to height 3”.
Real-time synthesis of such large programs opens up the
possibility to a powerful editing paradigm where the pro-
grammer can edit, in real-time, their examples, and then
provide new examples based on the results.

This is augmented further by two things. Firstly, Fugue’s
use of holes—and Fantasia’s synthesis of them—lets the
system give programmers more detailed and informative
feedback during synthesis. For example, if we begin by
giving the single-example problem of f : [a] → [a] {[] ⇒ []},
another synthesiser might give back the single program,
f a = a. Fantasia does too, since this is a correct result,
but it gives a second result: a case split over the input
list. The case of the Cons constructor is simply given as a
hole, since no relevant examples were given. This, however,
lets the user know that this is a possibility, and serves to
prompt them to add the relevant example if they desire.

The use of holes in a synthesis environment like this also
shines when we are dealing with partial functions, for exam-
ple head. Many synthesisers would refuse to synthesise such
a function, since no example could be given for the empty
list; or, they would silently return an undefined in this case.
Fugue does not have an undefined value like Haskell, so we
had to take a different approach here. A hole is returned
for the “impossible” case of the head of an empty list, which
tells the user “you have to come up with a value to put here,
either some undefined value or perhaps change the return
type to Maybe a and return Nothing”. h Furthermore, Fan-
tasia lends itself to iteratively synthesising as many results
as the user wants. This again improves the experience of the
real-time synthesis “conversation” the programmer will have
with the system, as in general the first result will appear very
quickly (or instantaneously), while some larger—potentially
still useful—results may take a little longer. The provision
of quick results keeps the user from waiting too long, espe-
cially when those small programs are often the ones desired,
but the nature of the problem is that we can leave the syn-
thesiser running in parallel (in another thread, if we want)
and provide new results if and when they are constructed.

To conclude on the performance side of things, a real-time
synthesis approach as made possible by Fantasia leads to a
conversational paradigm between the user and the system,
which is hard to find in other existing synthesis systems.
This conversational approach makes the synthesis of small
functions more feasible, since it may be faster to give one or
two examples than to hand-write even these small programs.
It also makes the synthesis of large programs more feasible,
since holes can indicate where additional examples might
be needed, and the fast feedback loop makes these larger
programs possible in the first place.

Fantasia can synthesise polymorphic functions. This is
useful firstly because polymorphic functions are useful in
general, for example we might want to synthesise a length
function which works on lists of any type. Polymorphic func-
tions hold a more subtle benefit, though, in the context of

program synthesis. If the type of an argument is polymor-
phic (i.e. universally quantified), the synthesiser knows that
it cannot possibly use the value of this argument in the syn-
thesis; it can only move the value around as a “black box”.

This lets us tacitly ask the synthesiser to ignore the spe-
cific value of an argument, which is useful for example in
the length function. If we use the example [1] ⇒ 1, the
synthesiser might be tempted to give us a function analo-
gous to head. However, if we specify the type [a] → Int, it
is forced to generalise more effectively. In Fantasia, this
example plus [] ⇒ 0 is enough to fully specify length.

Another helpful property of Fantasia is its regimented
way of implementing recursion. Recursion is only allowed
after a case-split, and the recursive arguments we supply
must come directly from the pattern-match following the
case analysis. This guarantees that functions are not in-
finitely recursive, and as a result, guarantees that all syn-
thesised programs will terminate.
This is an extremely powerful property which, while we do

not prove here, the proof is trivial and follows the narrative
above—essentially, if we can only recurse on parts of the
constructor, then—as long as the value we are recursing on
is not itself infinite—we are forced to call the function on
strictly “smaller” values. We will eventually reach the base
case then, by definition, as this is the smallest case.
We also note that, though this bureaucracy involved with

introducing recursion may seem restrictive, in does in fact
cover most cases where we would need recursion. The pat-
tern of case analysis followed by a different recursive call for
each branch is more powerful than, for example, a simple
“folding” operation.

One notable drawback of our technique, however, is that
it does not make use of pre-defined functions. For example,
there would be no way for a synthesised program to make
use of the built-in (==) : a → a → Bool function to check
if two values are the same. Or, no way to add two integers
together without synthesising an auxiliary function for addi-
tion (which, while possible, will increase the synthesis depth
required, and thus take a long time).
We explicitly opt to not use these additional functions,

or “components” as [17] refers to them, for primarily perfor-
mance reasons. As demonstrated in [17], and as discussed
by [8] and [4] (as a recurring problem with enumerative tech-
niques), the possibility of using arbitrary pre-defined com-
ponents increases the search space for synthesis greatly.
Näıvely, one might expect that allowing the use of one ad-

ditional function will give one more possibility at each“node”
in the search tree. However, polymorphic functions make the
problem exponentially worse. As discussed in [8], for exam-
ple, a definition of the function const : a → b → a effectively
introduces an“unbounded”number of distinct functions, one
for each pair of types.
Some solutions, such as [17], work around this somewhat

by restricting the set of components the synthesiser is al-
lowed to use. For example, to synthesise a function to count
the nodes in a tree, they provide the set of component func-
tion (+), along with the component literals 0 and 1. A simi-
lar approach is taken in [5], where components are extracted
from the examples directly (for example if an example con-
tains the literal 0, that will be present in the set of com-
ponents). Notably, however, [5] does not need to consider
function components such as (+), since it is enumerative.

Also, [16], an analytical synthesiser similar to ours, uses

component functions to great success. They use a“guessing”
method to introduce calls to these components functions, a
possibility which we discuss later in Section 5.1.

We can see then that there is a tradeoff between perfor-
mance and ease of use, depending on whether we allow the
full set of possible components (slow, but transparent to the
user) or ask the user to provide a set of components (faster,
but less convenient). Unfortunately, the design goals of Fan-
tasia were such that we want as much performance and ease
of use as possible, and as a result we chose to not allow these
extra components to be used in synthesis at all. This does
limit the system somewhat in which programs it can gener-
ate, but we discuss potential solutions to this in Section 5.1.

5.1 Future Work
There are lots of exciting areas which can be explored

relating to the techniques we have shown in this paper. In
this section, we present a selection of these.

Enumerative Synthesis. It is likely that an additional syn-
thesis rule implementing an enumerative synthesiser, per-
haps named R-Enumerative, would provide a number of
benefits to our (primarily analytical) synthesiser. Such a
rule might look for any possible fully-formed expressions
(though likely only expressions within the depth allowable
by the current state of iterative deepening) and “test” these
against the example-set.

A rule implementing enumerative synthesis as a search
over all (or some subset of) possible expressions would likely
be the end of the line; any function calls it produces would
almost definitely not be able to use the analytical synthesis
techniques to produce their arguments, as doing so would
likely require an inverse of the function to produce the sub-
sequent examples.

This is probably the improvement to the system which
would have the biggest impact. Also, since no further syn-
thesis sub-goals would be produced from such a rule, it
should not slow down the synthesis significantly. Such an
approach would be similar to the divide-and-conquer enu-
merative synthesis proposed in [2].

Higher-order Function Synthesis. Synthesis of higher-
order functions is something which Fantasia does not
currently support, but would be useful. Straightforwardly,
adding a rule which synthesises applications of functions
found in arguments to some set of other arguments would
be an important step towards this goal, and would make
some higher order functions (e.g. map) synthesisable.

We may also like to provide examples in general terms of
“any function argument”, such as {f, [1, 2] ⇒ ⟨[f 1, f 2]⟩}.
This would require thunks to be allowable example outputs
as well as just inputs.

Specialised Rules. Some programming idioms are so ubiq-
uitous that a huge number of functions can be implemented
just using them. In many cases, these are higher-order func-
tions, such as map and fold, which abstract away some spe-
cific form of recursion. It may be worthwhile to implement
rules into Fantasia for some of these, as a map can be sig-
nificantly more efficient—in terms of program size—than re-
implementing a similar procedure each time it is required.

Synthesising Infinite Data. We noted earlier that, due to
the structured way we introduce recursion into synthesised
programs, infinite recursion is not possible. We suggested
that this is a good thing, as it is in most cases—why would
we want a program which doesn’t terminate? Sometimes,

however, due to lazy evaluation of programs, this might be
desirable. It would be interesting to look into techniques and
extensions of Fantasia which would allow for the synthesis
of, say, an infinite list of Fibonacci numbers.

5.2 Conclusion
In this paper, we have introduced a novel synthesis tech-

nique that is powerful, elegant, simple, and extensible. We
have solved a standing problem present in similar techniques
([16], [10]) of the synthesis of recursive functions with min-
imal examples, by using thunks to guess at recursive be-
haviour during synthesis.

We have shown that our theory works in practice in our
implementation, Fantasia, which successfully synthesises
non-trivial Fugue programs. In our implementation, we
show how the real-time synthesis speed can lead to an ex-
ploratory, conversational approach to synthesis.

While Fantasia is a prototype at this stage, it shows
promising signs that the techniques are useful, and we have
discussed a number of ways in which it can be improved and
extended in the future.

6. REFERENCES
[1] A. Albarghouthi, S. Gulwani, and Z. Kincaid.

Recursive program synthesis. In N. Sharygina and
H. Veith, editors, Computer Aided Verification,
Lecture Notes in Computer Science, pages 934–950.
Springer. doi:10.1007/978-3-642-39799-8_67.

[2] R. Alur, A. Radhakrishna, and A. Udupa. Scaling
enumerative program synthesis via divide and
conquer. In A. Legay and T. Margaria, editors, Tools
and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, pages
319–336. Springer.
doi:10.1007/978-3-662-54577-5_18.

[3] M. V. Eekelen. Systematic search for lambda
expressions. In Trends in Functional Programming,
volume 6, pages 111–126. Intellect Books.
Google-Books-ID: R7urDwAAQBAJ.

[4] K. Ferdowsifard, S. Barke, H. Peleg, S. Lerner, and
N. Polikarpova. LooPy: interactive program synthesis
with control structures. Proc. ACM Program. Lang.,
5:153:1–153:29. doi:10.1145/3485530.

[5] K. Ferdowsifard, A. Ordookhanians, H. Peleg,
S. Lerner, and N. Polikarpova. Small-step live
programming by example. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software
and Technology, pages 614–626. ACM. URL:
https://dl.acm.org/doi/10.1145/3379337.3415869,
doi:10.1145/3379337.3415869.

[6] A. Gill and G. Hutton. The worker/wrapper
transformation. Journal of Functional Programming,
19(2):227–251. Publisher: Cambridge University Press.

[7] GitHub. GitHub copilot. URL:
https://github.com/features/copilot.

[8] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang,
R. Jhala, and N. Polikarpova. Program synthesis by
type-guided abstraction refinement. Proc. ACM
Program. Lang., 4:1–28. URL:
https://dl.acm.org/doi/10.1145/3371080,
doi:10.1145/3371080.

[9] M. Hofmann. Schema-guided inductive functional

programming through automatic detection of type
morphisms. Accepted: 2019-09-19T15:35:55Z Journal
Abbreviation: Schemagesteuerte Induktive
Funktionale Programmsynthese durch Automatische
Erkennung von Typmorphismen. URL:
https://fis.uni-bamberg.de/handle/uniba/264.

[10] S. Katayama. An analytical inductive functional
programming system that avoids unintended
programs. In Proceedings of the ACM SIGPLAN 2012
workshop on Partial evaluation and program
manipulation - PEPM ’12, page 43. ACM Press. URL:
https://dl.acm.org/doi/10.1145/2103746.2103758,
doi:10.1145/2103746.2103758.

[11] S. Katayama. Efficient exhaustive generation of
functional programs using monte-carlo search with
iterative deepening. In Lecture Notes in Computer
Science, volume 5351, pages 199–210. Springer.

[12] S. Katayama. MagicHaskeller on the web: Automated
programming as a service. In Haskell Symposium 2013.

[13] N. Mitchell. Hoogle overview. The Monad. Reader,
12:27–35.

[14] OpenAI. ChatGPT: Optimizing language models for
dialogue. URL: https://openai.com/blog/chatgpt/.

[15] OpenAI. GPT-4 technical report. URL:
http://arxiv.org/abs/2303.08774,
arXiv:2303.08774[cs],
doi:10.48550/arXiv.2303.08774.

[16] P.-M. Osera and S. Zdancewic.
Type-and-example-directed program synthesis. In
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’15, pages 619–630. Association
for Computing Machinery.
doi:10.1145/2737924.2738007.

[17] N. Polikarpova, I. Kuraj, and A. Solar-Lezama.
Program synthesis from polymorphic refinement types.
In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 522–538. ACM. URL:
https://dl.acm.org/doi/10.1145/2908080.2908093,
doi:10.1145/2908080.2908093.

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3485530
https://dl.acm.org/doi/10.1145/3379337.3415869
https://doi.org/10.1145/3379337.3415869
https://github.com/features/copilot
https://dl.acm.org/doi/10.1145/3371080
https://doi.org/10.1145/3371080
https://fis.uni-bamberg.de/handle/uniba/264
https://dl.acm.org/doi/10.1145/2103746.2103758
https://doi.org/10.1145/2103746.2103758
https://openai.com/blog/chatgpt/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774 [cs]
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/2737924.2738007
https://dl.acm.org/doi/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093

	Introduction
	Examples
	Overview
	Contributions

	Related Work
	Enumerative
	Analytical
	Machine Learning

	Our Technique
	Worked Example
	Synthesis Rules
	Other Rules
	Thunks

	Fantasia & Practicalities
	Iterative Deepening
	Multiple Synthesis Results
	Prioritising Good Rules
	Winding & Finalising

	Analysis & Conclusion
	Future Work
	Conclusion

	References

