
Calculating Compilers Effectively
Functional Pearl

Zac Garby
University of Nottingham

Nottingham, United Kingdom
zac.garby@nottingham.ac.uk

Graham Hutton
University of Nottingham

Nottingham, United Kingdom
graham.hutton@nottingham.ac.uk

Patrick Bahr
IT University of Copenhagen

Copenhagen, Denmark
paba@itu.dk

Abstract
Much work in the area of compiler calculation has focused
on pure languages. While this simplifies the reasoning, it
reduces the applicability. In this article, we show how an
existing compiler calculation methodology can be naturally
extended to languages with side effects. We achieve this
by exploiting an algebraic approach to effects, which keeps
the reasoning simple and provides flexibility in how effects
are interpreted. To make the ideas accessible we only use
elementary functional programming techniques.

CCS Concepts: • Software and its engineering→ Com-
pilers; Formal software verification; •Theory of compu-
tation→ Logic and verification; Program verification.

Keywords: program calculation, algebraic effects, monads
ACM Reference Format:
Zac Garby, Graham Hutton, and Patrick Bahr. 2024. Calculating
Compilers Effectively: Functional Pearl. In Proceedings of the 17th
ACM SIGPLAN International Haskell Symposium (Haskell ’24), Sep-
tember 6–7, 2024, Milan, Italy. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3677999.3678283

1 Introduction
Compiler calculation aims to develop compilers whose cor-
rectness is guaranteed by construction. The process typically
begins with a semantics for the language being compiled, and
seeks to derive a compiler that preserves the semantics using
some form of stepwise reasoning. A range of approaches for
achieving this aim have been developed over the years, such
as [Ager et al. 2003; Bahr and Hutton 2015, 2020; Elliott 2017;
Gibbons 2022; Meijer 1992; Wand 1982].

To date, however, work in this area has primarily focused
on pure languages. Side effects, such as mutable state, tend

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’24, September 6–7, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1102-2/24/09
https://doi.org/10.1145/3677999.3678283

to complicate the reasoning process: semantic domains be-
comes more complex, evaluation order becomes important,
and it is often necessary to reason explicitly with monads.
Those that have considered effects usually simulate them in a
pure manner, rather than using real side effects. For example,
[Bahr and Hutton 2015; Meijer 1992; Wand 1982] simulate
state using pure functions of type State → (Result, State),
rather than using real mutable references.
Despite the above complications, side effects are impor-

tant for any practical language. In this article, we show how
an algebraic approach to effects inspired by [Bahr and Hut-
ton 2023; Pretnar 2015; Swierstra and Altenkirch 2007] can
be combined with the compiler calculation methodology
of [Bahr and Hutton 2015] to derive compilers for languages
with effects using simple equational reasoning.

We introduce our approach via three examples of increas-
ing complexity, starting with printing, then state, and finally
non-determinism. A key aspect of our algebraic approach is
flexibility in how effects are interpreted.We demonstrate this
by providing a range of semantics for each effect, including
semantics that perform real effects, and versions with extra
features such as single stepping and logging.

To make the ideas accessible we don’t assume prior knowl-
edge of compiler calculation or algebraic effects, and we take
an elementary approach using simple, explicit definitions
where possible. We discuss how our techniques can be gen-
eralised and abstracted at the end of the article.
All the programs and calculations are written in Haskell,

exploiting its built-in support for monads, but the under-
lying ideas are applicable in any functional language. The
calculations have also been verified in Agda, and all the code
is available as supplementary material [Garby et al. 2024].

2 A language with printing
To introduce our approach to compiler calculation for lan-
guages with effects, we begin by considering a simple lan-
guage of expressions built up from integer values using an
addition operator [Hutton 2023], extended with a primitive
for printing the value of an expression:

data Expr = Val Int | Add Expr Expr | Print Expr
For example, the expression Print (Add (Val 1) (Val 2))
adds together two integers and prints the result. This be-
haviour could be realised in practice by defining a semantic
function eval :: Expr → IO Int that evaluates an expression

https://orcid.org/0009-0007-3441-3646
https://orcid.org/0000-0001-9584-5150
https://orcid.org/0000-0003-1600-8261
https://doi.org/10.1145/3677999.3678283
https://doi.org/10.1145/3677999.3678283

Haskell ’24, September 6–7, 2024, Milan, Italy Zac Garby, Graham Hutton, and Patrick Bahr

to an action that returns an integer value, where the use of
the IO monad allows the side effect of printing.
For our purposes, however, we prefer to take a more ab-

stract, algebraic approach to effects, which for this simple
expression language can be achieved by replacing the use of
the built-in IO monad by a custom monad of print sequences
that captures the notion of printing integer values.

2.1 Print sequences
The type of print sequences, PrintSeq a, represents sequences
of computations that return a final value of type a, and may
use an operation that prints integer values:

data PrintSeq a where
Ret :: a→ PrintSeq a
PrintInt :: Int → PrintSeq a→ PrintSeq a

This declaration could also be parameterised by the type of
values being printed, but for simplicity we don’t do this here.
Informally, Ret v returns the value v, while PrintInt n ps
prints the integer n and then behaves as the print sequence ps.
For example, a print sequence that prints three integers and
returns the void result () can be defined as follows:

three :: PrintSeq ()
three = PrintInt 1 (PrintInt 2 (PrintInt 3 (Ret ())))
Note that three does not print anything, but rather builds a
data structure that represents the action of printing.

Print sequences naturally form amonad, with return being
simply the Ret constructor, and the bind operator >>= defined
by replacing the Ret at the end of a print sequence by a
function that returns another such sequence:

instance Monad PrintSeq where
return :: a→ PrintSeq a
return = Ret

(>>=) :: PrintSeq a→ (a→ PrintSeq b) → PrintSeq b
Ret v >>= f = f v
PrintInt n ps >>= f = PrintInt n (ps >>= f)

It is straightforward to show that these definitions satisfy
the monad laws, which express, modulo the fact that >>=
involves a binding operation, that return is the identity for
the >>= operator, and that >>= is associative:

return v >>= f = f v
ps >>= return = ps

(ps >>= f) >>= g = ps >>= (_v → f v >>= g)
We will use these properties, together with the do notation,
when writing and reasoning about print sequences.

We conclude by noting that print sequences are essentially
just lists of integers, except that lists end with the empty
list [] whereas print sequences end with a value of type a. In-
deed, this observation provides an alternative formulation of
print sequences as a pair of type ([Int], a), which is a writer

monad that accumulates a list of integers. However, we pre-
fer the original recursive definition for print sequences, as it
emphasises their algebraic nature, and naturally generalises
to other forms of effect later on.

2.2 Semantics of expressions
To define a semantics for expressions, we first define a helper
function that constructs a singleton print sequence:

printInt :: Int → PrintSeq ()
printInt n = PrintInt n (Ret ())
We could have defined this function to return n itself, rather
than the void result (). However, we prefer the above defi-
nition because it mirrors the behaviour of the basic output
primitives in Haskell, and also results in simpler properties
when we consider the semantics of print sequences.

Using the fact the print sequences form a monad, it is then
easy to define an evaluation semantics for expressions:

eval :: Expr → PrintSeq Int
eval (Val n) = return n
eval (Add x y) = do n← eval x;m← eval y; return (n +m)
eval (Print x) = do n← eval x; printInt n; return n

Note that eval itself doesn’t actually print anything, but
builds a data structure that represents the sequence of print
operations that result from evaluation.

2.3 Compiler specification
We have now defined a type Expr that represents the syntax
of a simple expression language that supports printing, and
a function eval that gives a monadic evaluation semantics
for the language in terms of print sequences. In this section
we show how to specify the desired behaviour of a compiler
for this simple expression language.

Our goal is to define a function comp :: Expr → Code that
compiles an expression into code for a suitable machine. We
assume the compiler targets a stack-based machine, whose
semantics is given a function exec :: Code→ Stack → Stack
that executes code using an initial stack to give a final stack,
where a stack is simply a list of integers:

type Stack = [Int]
However, because the function eval :: Expr → PrintSeq Int
defines the semantics of expressions in terms of print se-
quences, we also generalise the type of the execution func-
tion to operate in the same monadic setting:

exec :: Code→ Stack → PrintSeq Stack

The definitions for the Code datatype and the exec function
are not given up front, but will rather fall out naturally as
part of the process of calculating the compiler itself.

Prior to specifying the desired behaviour of the compiler,
we generalise the function comp to take additional code to
be executed after the compiled code. The addition of such a

Calculating Compilers Effectively Haskell ’24, September 6–7, 2024, Milan, Italy

code continuation is a key aspect of the methodology and
simplifies the resulting calculations [Bahr and Hutton 2015].
Using this idea, our goal now is to establish the following
compiler correctness property for the generalised compila-
tion function comp :: Expr → Code→ Code:

exec (comp e c) s = do v ← eval e; exec c (v : s) (1)

That is, compiling an expression and executing the resulting
code together with the supplied additional code should give
the same print sequence as executing the additional code
with the value of the expression on top of the stack.

2.4 Compiler calculation
We now show how equation (1) can be used to calculate an
implementation of the compiler, by induction on the expres-
sion e. For each case of e, we start with the right-hand side of
the equation, do v ← eval e; exec c (v : s), and seek to trans-
form it by equational reasoning into the form exec c′ s for
some code c′. We then define comp e c = c′, which gives us
a clause for the compiler that is guaranteed by construction
to satisfy the correctness equation.
The base case, e = Val n, begins by applying eval, and

simplifying the resulting term using the monad laws:

do v ← eval (Val n); exec c (v : s)
= { definition of eval }
do v ← return n; exec c (v : s)

= { monad laws }
exec c (n : s)

To complete the calculation for this case, we need to arrive
at a term of the form exec c′ s. That is, we have to find some
code c′ that solves the following equation:

exec c′ s = exec c (n : s)
Note that we cannot simply use this equation as a defining
clause for exec, as the variables n and c would be unbound in
the body of the definition. The solution is to package these
two variables up in the code argument c′, which can freely
be instantiated as it is existentially quantified. This can be
achieved by adding a new constructor to the Code datatype
that takes an integer and code as arguments,

PUSH :: Int → Code→ Code

and defining a new clause for the function exec:

exec (PUSH n c) s = exec c (n : s)
That is, executing code of the form PUSH n c proceeds by
pushing the value n onto the stack and then executing the
code c, which motivates the choice of name for the new
constructor. This definition solves the above equation, and
allows us to conclude the calculation:

exec c (n : s)
= { definition of exec }
exec (PUSH n c) s

The resulting term is now of the form exec c′ s, with c′ =
PUSH n c, which gives the first clause for the compiler:

comp (Val n) c = PUSH n c

The inductive case for addition, e = Add x y, proceeds in
a similar manner, in which we introduce a new code con-
structor ADD that adds the top two values on the stack, this
time motivated by the desire to transform the term into a
form to which the induction hypotheses can be applied:

do v ← eval (Add x y); exec c (v : s)
= { definition of eval }
do v ← do {n← eval x;m← eval y;

return (n +m) }; exec c (v : s)
= { monad laws }
do n← eval x;m← eval y; exec c ((n +m) : s)

= {define: exec (ADD c) (m : n : s) =
exec c ((n +m) : s) }

do n← eval x;m← eval y; exec (ADD c) (m : n : s)
= { induction hypothesis for y }
do n← eval x; exec (comp y (ADD c)) (n : s)

= { induction hypothesis for x }
exec (comp x (comp y (ADD c))) s

The resulting term is now of the form exec c′ s, which gives
the second clause for the compilation function:

comp (Add x y) c = comp x (comp y (ADD c))

Finally, the inductive case for printing, e = Print x, intro-
duces a new code constructor PRINT that prints the top value
on the stack, which again allows induction to be applied:

do v ← eval (Print x); exec c (v : s)
= { definition of eval }
do v ← do {n← eval x; printInt n;

return n}; exec c (v : s)
= { monad laws }
do n← eval x; printInt n; exec c (n : s)

= {define: exec (PRINT c) (n : s) =
do printInt n; exec c (n : s) }

do n← eval x; exec (PRINT c) (n : s)
= { induction hypothesis for x }
exec (comp x (PRINT c)) s

To complete the compiler calculation, we consider a top-
level function compile :: Expr → Code that compiles expres-
sions into code, specified by the following property:

exec (compile e) s = do v ← eval e; return (v : s) (2)

To calculate an implementation, we aim to transform the
right-hand side of this equation into the form exec c s for
some code c, and then define compile e = c. In this case sim-
ple calculation suffices, by first introducing a new code con-
structor that halts execution, and then using equation (1):

Haskell ’24, September 6–7, 2024, Milan, Italy Zac Garby, Graham Hutton, and Patrick Bahr

do v ← eval e; return (v : s)
= { define: exec HALT s = return s }
do v ← eval e; exec HALT (v : s)

= { specification (1) }
exec (comp e HALT) s

In summary, we have calculated the following definitions
for the code datatype, compiler and stack machine. In each
case, the definition arose in a natural manner from the desire
to satisfy the compiler correctness equations.

data Code where
PUSH :: Int → Code→ Code
ADD :: Code→ Code
PRINT :: Code→ Code
HALT :: Code

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (Print x) c = comp x (PRINT c)
exec :: Code→ Stack → PrintSeq Stack
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (m : n : s) = exec c ((n +m) : s)
exec (PRINT c) (n : s) = do printInt n; exec c (n : s)
exec HALT s = return s

2.5 Semantics of print sequences
Print sequences are a data structure that represents the action
of printing a sequence of integers. To realise this behaviour in
practice, we define a concrete semantics using the IO monad,
by means of a function that runs a print sequence:

run :: PrintSeq a→ IO a
run (Ret v) = return v
run (PrintInt n ps) = do print n; run ps

That is, running a return value simply returns the value, and
running a print operation prints the supplied integer and
runs the remaining print sequence. For instance, applying
run to our example print sequence from earlier,

three :: PrintSeq ()
three = PrintInt 1 (PrintInt 2 (PrintInt 3 (Ret ())))

gives the following output, as expected:

1
2
3

The function run :: PrintSeq a → IO a is an example of a
monad morphism [Wadler 1995] — a polymorphic function

between monads that preserves the monad operations in the
sense that the following two equations hold:

run (return v) = return v

run (ps >>= f) = run ps >>= (run ◦ f)

The return and >>= on the left-hand side of these equations
are for the PrintSeqmonad, while on the right-hand side they
are for the IO monad. In addition, run satisfies the following
simple property, which expresses that running a singleton
print sequence just prints the integer value:

run (printInt n) = print n (3)

In fact, run is the unique monad morphism that satisfies
this property, and hence the behaviour of run is fully deter-
mined by its behaviour on the basic operation printInt. It is
straightforward to verify all these properties.

2.6 Fusing execution and running
If desired, the exec and run functions can be fused together
to eliminate the intermediate use of print sequences, giving
a function exec′ ::Code→ Stack → IO Stack. The behaviour
of exec′ can be specified by the equation

exec′ c s = run (exec c s) (4)

from which a definition can be calculated by induction on
the code c. The base case, for c = HALT , makes use of the
fact that run is a monad morphism:

exec′ HALT s
= { specification (4) }
run (exec HALT s)

= { definition of exec }
run (return s)

= { run is a monad morphism }
return s

In turn, the inductive case for printing also uses the fact that
run preserves printing, as captured by property (3):

exec′ (PRINT c) (n : s)
= { specification (4) }
run (exec (PRINT c) (n : s))

= { definition of exec }
run (do printInt n; exec c (n : s))

= { run is a monad morphism }
do run (printInt n); run (exec c (n : s))

= { property (3) }
do print n; run (exec c (n : s))

= { induction hypothesis }
do print n; exec′ c (n : s)

The remaining cases, for pushing and adding, follow by
straightforward induction, and do not require properties
of run. In conclusion, we obtain the following definition:

Calculating Compilers Effectively Haskell ’24, September 6–7, 2024, Milan, Italy

exec′ :: Code→ Stack → IO Stack
exec′ (PUSH n c) s = exec′ c (n : s)
exec′ (ADD c) (m : n : s) = exec′ c ((n +m) : s)
exec′ (PRINT c) (n : s) = do print n; exec′ c (n : s)
exec′ HALT s = return s

It is also possible to calculate the exec′ directly, rather than
first calculating exec and then fusing with run.

2.7 Alternative semantics
Since print sequences can be fused away, and printing ulti-
mately requires a side effect, why are they useful?
The key benefit is that using an algebraic approach that

separates syntax and semantics gives extra flexibility. In par-
ticular, we have a syntactic approach to printing via the
PrintSeq monad, which we give a semantics in terms of the
IO monad via the run function. This separation of concerns
means that we have the flexibility to consider other seman-
tics for print sequences without the need to redo the com-
piler calculation, by simply modifying run. This is possible
because the calculation does not depend on this function.

For example, suppose that we wished to allow the user to
single step through the output, thereby providing a simple
form of ‘debug mode’. This could be achieved by defining a
new semantics for print sequences that waits for the user to
hit enter after each print operation:

runStep :: PrintSeq a→ IO a
runStep (Ret v) = return v
runStep (PrintInt n ps) = do print n; getLine; runStep ps

Alternatively, we may wish to filter out undesired outputs,
such as ‘launching missiles’ [Harris et al. 2005]. For example,
for our simple language we could define a new semantics
that filters out negative numbers as follows:

runPos :: PrintSeq a→ IO a
runPos (Ret v) = return v
runPos (PrintInt n ps) | n ⩾ 0 = do print n; runPos ps

| otherwise = runPos ps

We also have the flexibility to interpret print sequences in
other settings than the IO monad. For example, we could
collect the outputs in a list rather than printing them,

runList :: PrintSeq a→ [Int]
runList (Ret v) = []
runList (PrintInt n ps) = n : runList ps

and it is possible to reverse the order of the elements in a
print sequence, using the following definition:

runRev :: PrintSeq a→ PrintSeq a
runRev (Ret v) = return v
runRev (PrintInt n ps) = do v ← runRev ps

PrintInt n (Ret v)

Finally, we could also interpret print sequences using more
than one monad, such as using Maybe to define a semantics
that only prints if all the outputs are non-negative:

runMaybe :: PrintSeq a→ Maybe (IO a)
runMaybe (Ret v) = Just (return v)
runMaybe (PrintInt n p)
| n ⩾ 0 = do a← runMaybe p

return (do print n; a)
| otherwise = Nothing

In general, we have the freedom to interpret print sequences
in any way that we choose, which gives great flexibility.

3 A language with state
For our next example, we consider an expression language
with primitives for getting and setting an integer state:

data Expr = Val Int | Add Expr Expr | Get | Set Expr
For example, Set (Add Get (Val 1)) increments the state by
getting the current value, adding one to it, and setting the
state to the resulting value. This behaviour could be realised
by defining a semantics eval :: Expr → ST Int that uses a
suitable state monad ST to manage the effect of manipulating
an integer state. As with the previous example, however, we
prefer to take a more abstract, algebraic approach and define
the semantics using a monad of state sequences.

3.1 State sequences
The type of state sequences, StateSeq a, represents sequences
of computations that return a final value of type a, and may
use operations that get and set an integer state:

data StateSeq a where
Ret :: a→ StateSeq a
GetInt :: (Int → StateSeq a) → StateSeq a
SetInt :: Int → StateSeq a→ StateSeq a

Informally, Ret v returns the value v, whileGetInt c feeds the
current state into the continuation c, which takes an integer
and returns a state sequence that captureswhat happens next,
while SetInt n ss sets the current state to n and then behaves
as the state sequence ss. For instance, our increment example
above can be realised by the following state sequence:

inc :: StateSeq ()
inc = GetInt (_n→ SetInt (n + 1) (Ret ()))
That is, we first get the current state and call it n, then set
the state to n + 1, and finally return the void result (). Note
that inc does not actually change a state, but rather builds a
data structure that represents the action of doing so.
State sequences form a monad, and it is straightforward

to show that the monad laws are satisfied:

instance Monad StateSeq where
return :: a→ StateSeq a

Haskell ’24, September 6–7, 2024, Milan, Italy Zac Garby, Graham Hutton, and Patrick Bahr

return = Ret

(>>=) :: StateSeq a→ (a→ StateSeq b) → StateSeq b
Ret v >>= f = f v
GetInt c >>= f = GetInt (_n→ c n >>= f)
SetInt n ss >>= f = SetInt n (ss >>= f)

3.2 Compiler calculation
The starting point for calculating a compiler is an evaluation
semantics for expressions in terms of state sequences:

eval :: Expr → StateSeq Int
eval (Val n) = return n
eval (Add x y) = do n← eval x;m← eval y; return (n +m)
eval Get = getInt
eval (Set x) = do n← eval x; setInt n; return n

The two helper functions used above construct singleton
state sequences that get and set the integer state:

getInt :: StateSeq Int
getInt = GetInt Ret

setInt :: Int → StateSeq ()
setInt n = SetInt n (Ret ())

In a similar manner to Section 2, our goal now is to calcu-
late a compilation function comp::Expr → Code→ Code and
an execution function exec ::Code→ Stack → StateSeq Stack
that satisfy the following correctness equation:

exec (comp e c) s = do v ← eval e; exec c (v : s) (5)

As previously, the Stack type is simply a list of integers,
while the Code type will be derived during the calculation
process. The calculation itself proceeds by induction on the
expression e, with the aim of transforming the right-hand
side of the equation into the form exec c′ s for some code c′,
which then allows us to define comp e c = c′.

The cases for Val n and Add x y proceed in the same way
as before, and result in the same definitions. The case for
Get follows by simply applying the definition of eval, and
then introducing a new code constructor GET that pushes
the current state onto the stack, in order to transform the
term being manipulated into the required form:

do v ← eval Get; exec c (v : s)
= { definition of eval }
do v ← getInt; exec c (v : s)

= { define: exec (GET c) s = do n← getInt; exec c (n : s) }
exec (GET c) s

And finally, the case for Set x is similar to the case for Print x,
except that this time around we are storing an integer in a
state rather than printing an integer:

do v ← eval (Set x); exec c (v : s)
= { definition of eval }
do v ← do {n← eval x; setInt n; return n}; exec c (v : s)

= { monad laws }
do n← eval x; setInt n; exec c (n : s)

= {define: exec (SET c) (n : s) =
do setInt n; exec c (n : s) }

do n← eval x; exec (SET c) (n : s)
= { induction hypothesis for x }
exec (comp x (SET c)) s

The top-level function compile :: Expr → Code is calculated
in the same way as previously. In conclusion, we obtain the
following definitions for the code datatype, compiler and
stack machine, which are guaranteed to be correct by the
manner in which they are constructed:

data Code where
PUSH :: Int → Code→ Code
ADD :: Code→ Code
GET :: Code→ Code
SET :: Code→ Code
HALT :: Code

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp Get c = GET c
comp (Set x) c = comp x (SET c)
exec :: Code→ Stack → StateSeq Stack
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (n :m : s) = exec c ((m + n) : s)
exec (GET c) s = do n← getInt; exec c (n : s)
exec (SET c) (n : s) = do setInt n; exec c (n : s)
exec HALT s = return s

3.3 Semantics of state sequences
To realise the behaviour of state sequences in practice, we
can define a concrete semantics using Haskell’s state monad
[Wadler 1992], in which the type State s a represents a state
transformer of type s→ (a, s), where s is the type of states
and a is the type of result values. In our case, the state is
simply an integer, and we define a semantics as follows:

run :: StateSeq a→ State Int a
run (Ret v) = return v
run (GetInt c) = do n← get; run (c n)
run (SetInt n ss) = do put n; run ss

In this definition, the library primitive get :: State s s returns
the current value of the state, while put :: s→ State s () sets
the state to the given value. Note that in the case of GetInt,
the continuation c is applied to the current state to give the
remaining state sequence to be interpreted.

Calculating Compilers Effectively Haskell ’24, September 6–7, 2024, Milan, Italy

A state transformer can be applied to an initial state using
runState :: State s a→ s→ (a, s). For instance, running the
increment example with zero as the initial state,

runState (run inc) 0

gives the pair ((), 1) comprising the void result value ()
and the incremented state one, as expected. The semantic
function run is a monad morphism, and also preserves the
basic state primitives in the sense that we have:

run getInt = get (6)

run (setInt n) = put n (7)

If desired, these properties can be used to fuse together exec
and run, resulting in the following definition:

exec′ :: Code→ Stack → State Int Stack
exec′ (PUSH n c) s = exec′ c (n : s)
exec′ (ADD c) (n :m : s) = exec′ c ((m + n) : s)
exec′ (GET c) s = do n← get; exec′ c (n : s)
exec′ (SET c) (n : s) = do put n; exec′ c (n : s)
exec′ HALT s = return s

3.4 Alternative semantics
Using an algebraic approach to stateful computation that
separates syntax from semantics means that we have the
flexibility to consider other semantics for state sequences,
without the need to redo the compiler calculation.

For example, rather than simulating state using the State
monad, we could use a real mutable reference, by means of
Haskell’s IORef mechanism [Peyton Jones 2001]. In particu-
lar, we can define a new semantics for state sequences that
takes a reference to an integer as an extra parameter:

runRef :: StateSeq a→ IORef Int → IO a
runRef (Ret v) r = return v
runRef (GetInt c) r = do n← readIORef r ; runRef (c n) r
runRef (SetInt n ss) r = do writeIORef r n; runRef ss r

Using this function, the following sequence of actions creates
a new reference r that is initialised to zero, increments the
reference, and then reads and prints the resulting value:

do r ← newIORef 0
runRef inc r
n← readIORef r
print n

In turn, if we wished to also track how the state changes, we
could further refine the semantics to log the operation that
is being applied at each step in a state sequence:

runLog :: Show a⇒ StateSeq a→ IORef Int → IO a
runLog (Ret v) r = do log "Ret" v; return v
runLog (GetInt c) r = do n← readIORef r

log "Get" n; runLog (c n) r

runLog (SetInt n ss) r = do writeIORef r n
log "Set" n; runLog ss r

The helper function used above that logs an operation and
its argument value is defined as follows:

log :: Show a⇒ String → a→ IO ()
log op v = putStrLn (op ++ " " ++ show v)
For example, executing the action sequence

do r ← newIORef 0
runLog inc r

gives the following log:

Get 0
Set 1
Ret ()
More generally, we can interpret state sequences in any way
that we choose, without the need to modify the compiler
for the language, as the calculation of the compiler does not
depend on the semantics of state sequences.

4 A language with non-determinism
For our final example, we consider a language with simple
primitives for expressing non-determinism, i.e. the ability to
return multiple possible result values, including none:

data Expr = Val Int | Add Expr Expr | Fail | Or Expr Expr
Intuitively, Fail represents failure to return a result value,
whileOr x y makes a non-deterministic choice between eval-
uating the expressions x and y. For example,Add (Val 1) Fail
fails to evaluate, because there is no second argument for the
addition, while Add (Val 1) (Or (Val 2) (Val 3)) evaluates
to either three or four, depending on which choice is made
for the second argument. These behaviours could be realised
by defining a function eval :: Expr → [Int] that uses the
list monad to manage the possibility of returning multiple
results. Here we take a more flexible, algebraic approach and
define the semantics using a monad of choice trees.

4.1 Choice trees
The type of choice trees, ChoiceTree a, represents trees of
computations that may return a successful value of type a,
and can also use operations that represent failure and choice:

data ChoiceTree a where
Ret :: a→ ChoiceTree a
Zero :: ChoiceTree a
Plus :: ChoiceTree a→ ChoiceTree a→ ChoiceTree a

Informally, Ret v succeeds with the value v, while Zero
fails without returning a value, and Plus x y makes a non-
deterministic choice between the two computations x and y.
For instance, the latter addition example above can be re-
alised by the following choice tree:

Haskell ’24, September 6–7, 2024, Milan, Italy Zac Garby, Graham Hutton, and Patrick Bahr

ctree :: ChoiceTree Int
ctree = Plus (Ret 3) (Ret 4)
That is, we have the choice of either returning three or four.
It can also be useful to view choice trees in a pictorial manner,
as in the following larger example:

Plus

Plus Ret 2

Zero Plus

Ret 1 Zero

Note that such trees do not perform non-deterministic com-
putation, but are rather data structures that represents the
action of doing so, which can be interpreted in different ways
depending on the desired semantics.

Choice trees naturally form a monad under the following
definitions, and satisfy the monad laws:

instance Monad ChoiceTree where
return :: a→ ChoiceTree a
return = Ret

(>>=) :: ChoiceTree a→ (a→ ChoiceTree b) → ChoiceTree b
Ret v >>= f = f v
Zero >>= f = Zero
Plus x y >>= f = Plus (x >>= f) (y >>= f)

The final two equations above state that, by definition, Zero
is the left zero for the >>= operator on choice trees, and that
>>= left distributes over Plus. In combination with the fact
that choice trees form a monoid under the run semantics
defined later in this section, these additional laws express
that choice trees form a monad with a zero and a plus.

4.2 Compiler calculation
Starting from an evaluation function that defines the seman-
tics of expressions in terms of choice trees,

eval :: Expr → ChoiceTree Int
eval (Val n) = return n
eval (Add x y) = do n← eval x;m← eval y; return (n +m)
eval Fail = Zero
eval (Or x y) = Plus (eval x) (eval y)
we aim to calculate functions comp :: Expr → Code→ Code
and exec :: Code → Stack → ChoiceTree Stack that satisfy
the following correctness equation:

exec (comp e c) s = do v ← eval e; exec c (v : s) (8)

As before, a Stack is simply a list of integers, and we also
seek to derive the Code type. We focus here on the new
cases concerning non-determinism, with the other cases
proceeding in the same manner to the previous examples.

The case for Fail begins by applying the definition of eval,
then uses the fact that Zero is the left zero for the >>= operator,
and concludes by introducing a new code constructor FAIL
that simply discards the stack and returns Zero, in order to
transform the term into the required form:

do v ← eval Fail; exec c (v : s)
= { definition of eval }
do v ← Zero; exec c (v : s)

= { left zero law }
Zero

= { define: exec FAIL s = Zero }
exec FAIL s

In turn, the case for Or x y exploits the fact that >>= left dis-
tributes over Or , which allows the induction hypotheses to
be applied, after which we introduce a new code constructor
OR to obtain a term of the required form:

do v ← eval (Or x y); exec c (v : s)
= { definition of eval }
do v ← Plus (eval x) (eval y); exec c (v : s)

= { left distributivity law }
Plus (do v ← eval x; exec c (v : s))
(do v ← eval y; exec c (v : s))

= { induction hypotheses for x and y }
Plus (exec (comp x c) s) (exec (comp y c) s)

= { define: exec (OR c d) s = Plus (exec c s) (exec d s) }
exec (OR (comp x c) (comp y c)) s

The top-level function compile is the same as previously. In
conclusion, we obtain the following definitions:

data Code where
PUSH :: Int → Code→ Code
ADD :: Code→ Code
FAIL :: Code
OR :: Code→ Code→ Code
HALT :: Code

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp Fail c = FAIL
comp (Or x y) c = OR (comp x c) (comp y c)
exec :: Code→ Stack → ChoiceTree Stack
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (m : n : s) = exec c ((n +m) : s)
exec FAIL s = Zero
exec (OR c d) s = Plus (exec c s) (exec d s)
exec HALT s = return s

Calculating Compilers Effectively Haskell ’24, September 6–7, 2024, Milan, Italy

4.3 Semantics of choice trees
Using an algebraic approach to non-determinism by means
of choice trees gives us the flexibility to interpret such trees
in any way that we please. In this section, we consider a
number of possible semantics for choice trees.

First of all, the standard semantics that collapses a choice
tree down to a list of possible results is defined as follows:

run :: ChoiceTree a→ [a]
run (Ret v) = [v]
run Zero = []
run (Plus x y) = run x ++ run y

For instance, applying run to the example tree pictured ear-
lier gives the list [1, 2] comprising two possible results. If
desired, we could also define a semantics that returns just
the first result, if there is one, using the Maybe monad:

runMaybe :: ChoiceTree a→ Maybe a
runMaybe (Ret v) = Just v
runMaybe Zero = Nothing
runMaybe (Plus x y) = case runMaybe x of

Just v → Just v
Nothing → runMaybe y

For example, runMaybe traverses the example tree in the
manner illustrated below, with failure in the leftmost branch
eventually leading to the successful result one:

Plus

��
Plus

�� ��

Ret 2

Zero

AA

Plus

��
Ret 1 Zero

However, we may prefer a more refined semantics that uses
a stack to allow choice trees to be traversed in a more effi-
cient manner. In particular, taking a stack of trees of type
[ChoiceTree a] as an extra argument allows the above se-
mantics to be defined tail recursively:

runTail :: ChoiceTree a→ [ChoiceTree a] → Maybe a
runTail (Ret v) = Just v
runTail Zero [] = Nothing
runTail Zero (y : ys) = runTail y ys
runTail (Plus x y) ys = runTail x (y : ys)

That is, for Zero we simply remove and run the top tree on
the stack, if there is one. Conversely, for Plus x y we push
the tree y onto the stack, in case running the tree x fails. The
function runTail forms an abstract machine for evaluating
choice trees, and can also be calculated from runMaybe us-
ing the techniques in [Hutton and Bahr 2016]. The original

Maybe semantics can be recovered by passing in the empty
stack, i.e. defining runMaybe x = runTail x [].
Alternatively, rather than simulating failure using the

Maybe monad, we could use a real exception, by means of
Haskell’s Exception mechanism [Peyton Jones 2001]. For ex-
ample, we can define a semantics using a new exception
ZERO that can be thrown and caught in the IO monad:

data MyException = ZERO deriving (Show, Exception)
runExc :: ChoiceTree a→ IO a
runExc (Ret v) = return v
runExc Zero = throwIO ZERO
runExc (Plus x y) = catchException (runExc x)

(_ZERO → runExc y)

This approach can also further improve efficiency, as it is
using built-in language features to immediately jump to the
second argument of Plus if the first argument fails.
Finally, we could also implement non-determinism itself

for real, by randomly choosing which argument of each Plus
operator in a choice tree to run, using Haskell’s random
number feature. This also takes place within the IO monad
as the result is truly non-deterministic.

runRand :: ChoiceTree a→ IO (Maybe a)
runRand (Ret v) = return (Just v)
runRand Zero = return Nothing
runRand (Plus x y) = do n :: Int ← randomRIO (1, 2)

case n of
1→ runRand x
2→ runRand y

For example, applying runRand to the example tree pictured
above has three possible outcomes, Nothing, Just 1 or Just 2,
depending on which path through the tree is chosen. Two
further semantics, using parallelism and asynchronous con-
currency, are provided in the supplementary material.

5 Generalisation
As noted in the introduction, by design we have used simple,
explicit definitions where possible. In this section we take
a step back and consider how the ideas could be presented
in a more general or abstract manner, by modelling effect
types using type classes and free monads.

5.1 Type classes
For each of the effects we have considered, the compiler
calculations for the Val and Add cases were the same. The
reason is that the calculations only use the monad laws for
the underlying effect type, rather than the actual definition of
the type. In a similar manner, the calculations for the effectful
operations only use general monadic laws. For example, in
the Fail and Or cases for non-determinism, we used the fact
that choice trees form a monad with a zero and a plus.

Haskell ’24, September 6–7, 2024, Milan, Italy Zac Garby, Graham Hutton, and Patrick Bahr

This presents an opportunity for abstraction. Take print-
ing, for example. Because the calculations do not depend on
the specifics of the PrintSeq monad, we could use Haskell’s
type class system to capture the class of monads which sup-
port the operation of printing an integer:

class Monad m⇒ MonadPrint m where
printInt :: Int → m ()

Using this declaration, the function eval remains unchanged
syntactically, but now has a more general type:

eval ::MonadPrint m⇒ Expr → m Int
eval (Val n) = return n
eval (Add x y) = do n← eval x;m← eval y; return (n +m)
eval (Print x) = do n← eval x; printInt n; return n

In turn, if the type for exec is similarly generalised,

exec ::MonadPrint m⇒ Code→ Stack → m Stack

then our compiler specification and calculation for the print-
ing language in Section 2 can be reframed without modi-
fication using the general MonadPrint class, and results in
the same definitions. We are then free to instantiate the
MonadPrint class with different monads as and when re-
quired, such as using the PrintSeq or IO monads:

instance MonadPrint PrintSeq where
printInt :: Int → PrintSeq ()
printInt n = PrintInt n (Ret ())

instance MonadPrint IO where
printInt :: Int → IO ()
printInt n = print n

Taking this approach conveniently side-steps the need for
a semantic function run to interpret the PrintSeq type. On
the other hand, we lose some flexibility as we can no longer
manipulate the structure of the effects, only the basic opera-
tions. For example, we cannot give an instance that reverses
the printing order. Furthermore, Haskell permits only one
type class instance for each type, so we lose the ability to
provide multiple differing interpretations so easily.
For state, it is also easy to declare a class that abstracts

the basic operations for manipulating an integer state:

class Monad m⇒ MonadState m where
getInt ::m Int
setInt :: Int → m ()

However, we need to be more careful with non-determinism,
because we do make use of the behaviour of >>= during the
calculations. Once again, the starting point is to declare a
class that captures the basic operations required:

class Monad m⇒ MonadChoice m where
zero ::m a
plus ::m a→ m a→ m a

This time, the class declaration alone is not enough to com-
plete our compiler calculations. In particular, the case for
Fail uses a left-zero law, and the case for Or uses left dis-
tributivity. Hence, we need to require that any instance also
satisfies these two additional monadic laws:

zero >>= f = zero

(plus x y) >>= f = plus (x >>= f) (y >>= f)
The MonadChoice class with these two additional laws is
essentially the same (modulo renaming) as the MonadPlus
class in Haskell, except that the latter also requires values
of type m a to form a monoid under the two operations
of the class. While choice trees themselves do not form a
monoid because they are just syntax, as noted in Section 4
they do form a monoid under the semantic function run
that interprets such trees in the list monad. That is, if we
define a congruence relation � on choice trees by x � y iff
run x = run y, then we have the following monoid laws:

Or Fail y � y

Or x Fail � x

Or (Or x y) z � Or x (Or y z)
While the above type class generalisations do allow us to

present the compiler calculations in a more abstract manner,
we chose to introduce the classes here rather than using
them throughout the article to keep the presentation simple.
Taking a more abstract approach would also have delayed
in the introduction of the effect types PrintSeq, StateSeq and
ChoiceTree, which we found to be invaluable in understand-
ing and explaining how to calculate compilers for languages
with effects. Furthermore, such a generalisation also limits
the ways in which effects can be interpreted, as illustrated
with the reverse printing example.

5.2 Free monads
The form of effect types that we have considered naturally
arise as free monads [Lüth and Ghani 2002]. The starting
point for this construction is to capture the signatures of
the operations of an effect type by a signature functor. For
example, if we recall the type of state sequences,
data StateSeq a where
Ret :: a→ StateSeq a
GetInt :: (Int → StateSeq a) → StateSeq a
SetInt :: Int → StateSeq a→ StateSeq a

then the operations that get and set an integer state can be
captured by the following signature functor:
data StateSig a where
GetSig :: (Int → a) → StateSig a
SetSig :: Int → a→ StateSig a

Given a signature functor f , the free monad on f at type a
comprises syntactic terms constructed using operations from
f and variables of type a, and is defined as follows:

Calculating Compilers Effectively Haskell ’24, September 6–7, 2024, Milan, Italy

data Free f a = Var a | Con (f (Free f a))
It is straightforward to show that Free f is indeed a monad,
with >>= providing a notion of substitution for variables.

Using these ideas, the state sequence type StateSeq a can
be shown to be isomorphic to the free monad Free StateSig a.
In a similar manner, the types of print sequences PrintSeq a
and choice trees ChoiceTree a are isomorphic to free monads
on their underlying signature functors.

The utility of viewing effect types as free monads becomes
apparent if we wish to combine multiple effects together. For
example, suppose we wanted to define an effect type that
captures the operations of both PrintSeq and StateSeq. One
approach is to manually combine the constructors:
data PrintStateSeq a where

Ret :: a→ PrintStateSeq a
PrintInt :: Int → PrintStateSeq a→ PrintStateSeq a
GetInt :: (Int → PrintStateSeq a) → PrintStateSeq a
SetInt :: Int → PrintStateSeq a→ PrintStateSeq a

Another, more modular, approach is to consider the signa-
ture functors of the two effect types. In particular, if we
additionally define the signature functor for printing,
data PrintSig a where

PrintSig :: Int → a→ PrintSig a

then we can define the combined type by simply taking the
coproduct of PrintSig and StateSig using Haskell’s Sum con-
structor for functors, and then considering the free monad
of the resulting signature functor:
type PrintStateSeq a = Free (Sum PrintSig StateSig) a
To date, however, the approach to compiler calculation on
which this article is based [Bahr and Hutton 2015] hasn’t
considered modular approaches to syntax and semantics.
It would be interesting to explore the idea of calculating
compilers using effect types modelled as free monads.

6 Further work
In addition to the topics discussed in the previous section,
possible directions for further work include attempting to
calculate compilers in a generic manner for arbitrary effects,
supporting first-class handlers that allow dynamic control
over how effects are interpreted, exploiting the use of recur-
sion operators and their properties rather than using explicit
recursion and induction, and exploring how the approach
can be applied to more sophisticated languages.

Acknowledgements
We thank the referees for their useful comments and sug-
gestions. This work was partially funded by the Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/Y010744/1, Semantics-Directed Compiler Construction:
From Formal Semantics to Certified Compilers.

References
Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003.

From Interpreter to Compiler and Virtual Machine: A Functional Derivation.
Technical Report RS-03-14. BRICS, Department of Computer Science,
University of Aarhus.

Patrick Bahr and Graham Hutton. 2015. Calculating Correct Compilers.
Journal of Functional Programming 25 (2015).

Patrick Bahr and Graham Hutton. 2020. Calculating Correct Compilers II:
Return of the Register Machines. Journal of Functional Programming 30
(2020).

Patrick Bahr and Graham Hutton. 2023. Calculating Compilers for Con-
currency. Proceedings of the ACM on Programming Languages 7, ICFP,
Article 213 (2023).

Conal Elliott. 2017. Compiling to Categories. Proceedings of the ACM on
Programming Languages 1, ICFP, Article 27 (2017).

Zac Garby, Graham Hutton, and Patrick Bahr. 2024. Code for “Calculating
Compilers Effectively”. https://doi.org/10.5281/zenodo.12771956

Jeremy Gibbons. 2022. Continuation-Passing Style, Defunctionalization,
Accumulations, and Associativity. The Art, Science, and Engineering of
Programming 6, 2, Article 7 (2022).

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005.
Composable Memory Transactions. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

Graham Hutton. 2023. Programming Language Semantics: It’s Easy As 1,2,3.
Journal of Functional Programming 33 (2023).

Graham Hutton and Patrick Bahr. 2016. Cutting Out Continuations. In A
List of Successes That Can Change the World.

Christoph Lüth and Neil Ghani. 2002. ComposingMonads Using Coproducts.
In Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming.

Erik Meijer. 1992. Calculating Compilers. Ph. D. Dissertation. Katholieke
Universiteit Nijmegen.

Simon Peyton Jones. 2001. Tackling The Awkward Squad: Monadic In-
put/Output, Concurrency, Exceptions, and Foreign-Language Calls in
Haskell. In Engineering Theories of Software Construction.

Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers.
In Proceedings of the 31st Conference on the Mathematical Foundations of
Programming Semantics.

Wouter Swierstra and Thorsten Altenkirch. 2007. Beauty in the Beast. In
Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop.

PhilipWadler. 1992. The Essence of Functional Programming. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages.

Philip Wadler. 1995. Monads for Functional Programming. In Advanced
Functional Programming.

Mitchell Wand. 1982. Deriving Target Code as a Representation of Contin-
uation Semantics. ACM Transactions on Programming Languages and
Systems 4, 3 (1982).

Received 2024-06-03; accepted 2024-07-05

https://doi.org/10.5281/zenodo.12771956

	Abstract
	1 Introduction
	2 A language with printing
	2.1 Print sequences
	2.2 Semantics of expressions
	2.3 Compiler specification
	2.4 Compiler calculation
	2.5 Semantics of print sequences
	2.6 Fusing execution and running
	2.7 Alternative semantics

	3 A language with state
	3.1 State sequences
	3.2 Compiler calculation
	3.3 Semantics of state sequences
	3.4 Alternative semantics

	4 A language with non-determinism
	4.1 Choice trees
	4.2 Compiler calculation
	4.3 Semantics of choice trees

	5 Generalisation
	5.1 Type classes
	5.2 Free monads

	6 Further work
	References

