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Sound-By-Construction Type Systems (Functional Pearl)

ANONYMOUS AUTHOR(S)

Type systems for programming languages are usually designed by hand, with the aim of satisfying a type
soundness property that guarantees well-typed programs cannot go wrong. In this article, we show how
standard techniques for proving type soundness can be used in reverse to systematically derive type systems
that are sound by construction.We introduce and illustrate our methodology with a series of practical examples,
including a typed lambda calculus with conditionals and checked exceptions.

1 Introduction
A type system is a set of rules that specify how types can be assigned to each component of a
program in a particular language [Pierce 2002]. In this article, we focus on the process of designing
type systems. The traditional approach is to design type systems by hand, by first devising a set
of typing rules that formalise how types are assigned to program terms, and then proving a type
soundness property that guarantees ‘well-typed programs cannot go wrong’ [Milner 1978]. In
practice, this is usually an iterative process that requires quite a bit of trial and error, rather than
simply writing down a set of rules and then proving soundness.

Here we take a different approach. In particular, we show how standard techniques for proving
type soundness can be used in reverse to systematically derive type systems that are sound. The
starting point for our approach is a semantics for the language being considered, expressed as a big-
step evaluation relation. We then formulate a suitable type soundness property, which formalises
the idea that well-typed programs are guaranteed to evaluate successfully. And finally, we calculate
a set of typing rules by ‘solving’ the type soundness property using algebraic reasoning techniques,
in a similar manner to how equations are solved in mathematics.
The calculational approach to type system design has a number of benefits. First of all, type

systems produced in this manner are sound by construction, and hence require no separate proofs
of soundness after they have been produced. Secondly, the approach provides a principled way to
discover typing rules, and to explore alternative design choices during and after the calculation
process. And finally, the approach lends itself naturally to mechanical formalisation, allowing proof
assistants to be used as interactive tools for developing and certifying the calculations.
The aim of this article is to present a basic methodology for calculating type systems from

soundness properties, and establish its feasibility. Our presentation is example-driven, and is
structured around a series of languages of increasing complexity:

• We begin with a simple expression language with conditionals, show how to calculate a
type system for this language, and explore alternative design choices (section 2);

• We then extend the language with support for exception handling, and show how to calculate
a type system that supports the idea of checked exceptions (section 3);

• And finally, as more sophisticated examples, we calculate a type system for the lambda
calculus (section 4), and an extension with conditionals and exceptions (section 5).

Despite the fact that type systems and program calculation are both long-standing research
topics, to the best of our knowledge these ideas have not been combined before. We consider
minimal languages with particular features of interest, as this allows us to focus on core principles
and present many of the calculations in detail: our emphasis is on the calculation process, the
journey, rather than solely on the resulting type system, the destination. We restrict our attention
to languages with deterministic big-step semantics and type soundness properties that include
strong normalisation, and discuss possible generalisations in further work.
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The article is aimed at readers with some basic experience of formal semantics and reasoning,
but does not require specialist knowledge about type systems. All of the examples have also been
formalised in Agda, and the code is freely available as supplementary material.

2 Conditional Language
Consider a simple expression language built up from basic values using addition and conditional
operations, where a value is either an integer 𝑛 ∈ Z or a logical value 𝑏 ∈ {false, true}:

𝑒 ::= 𝑣 | add 𝑒 𝑒 | if 𝑒 then 𝑒 else 𝑒 𝑣 ::= 𝑛 | 𝑏

We define the semantics of the language using an evaluation relation 𝑒 ⇓ 𝑣 that specifies when an
expression 𝑒 can evaluate to a value 𝑣 , which is given by the following collection of rules:

𝑣 ⇓ 𝑣

𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

add 𝑒 𝑒′ ⇓ 𝑛 + 𝑛′
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

𝑒 ⇓ false 𝑒2 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

By convention, we use metavariables 𝑒 to range over expressions, 𝑣 over values, 𝑛 over integers,
and 𝑏 over logical values. For example, the first rule above has the implicit side condition that 𝑣 is a
value, and the second that 𝑛 and 𝑛′ are integers.

It is straightforward to show that evaluation is deterministic, i.e. every expression evaluates to at
most one value. However, evaluation can also fail, in particular when attempting to add values that
are not integers, or make a conditional choice on a value that is not true or false. Using a relational
semantics naturally captures the possibility of failure, as relations can be partial. In contrast, a
functional semantics typically requires an explicit failure value to ensure totality, which complicates
the semantics and reasoning using it. With the relational approach, failure of an expression 𝑒 to
evaluate simply means there is no value 𝑣 such that 𝑒 ⇓ 𝑣 .

2.1 Type Soundness
A common method for ensuring successful evaluation is to introduce a type system that guarantees
this. We first define a simple language of types comprising integers and logical values,

𝑡 ::= Int | Bool

together with a semantic function J−K that maps each type to the set of values it represents:

JIntK = Z JBoolK = {false, true}

Suppose now that we wish to define a typing relation ⊢ 𝑒 : 𝑡 that specifies when an expression 𝑒

can have type 𝑡 . The desired behaviour is captured by the following type soundness property:

⊢ 𝑒 : 𝑡
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

(1)

This property states that if an expression has a particular type, then the expression can always
evaluate to a value of this type. In combination with the evaluation relation being deterministic,
type soundness ensures that ‘well-typed expressions cannot go wrong’ [Milner 1978], i.e. they are
guaranteed to successfully evaluate to a value of the given type.

Note that the above specification gives flexibility in how the typing relation ⊢ is implemented, as
there may be many possible definitions that satisfy the type soundness property. Indeed, the empty
typing relation is trivially sound, and so is the relation given by simply defining ⊢ 𝑒 : 𝑡 to mean
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K. Our calculational approach naturally avoids such trivial solutions, and provides
a systematic means for designing typing rules that satisfy the above specification.
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2.2 Soundness by Construction
Now that we have formulated the type soundness property, the traditional approach at this point is
to manually define the typing relation ⊢ 𝑒 : 𝑡 using a collection of rules, and then prove that the
relation defined by these rules satisfies the soundness property [Pierce 2002].
However, rather than first defining the typing relation and then separately proving that it is

sound, we can also use soundness as the basis for directly calculating the definition of the relation.
That is, we can seek to derive the typing relation by solving the soundness property for this relation,
in much the same way as we solve equations in mathematics. A type system produced in this
manner is sound by construction, and hence requires no separate proof of soundness.
The starting point for our methodology to achieve the above is to define a semantic typing

relation that exactly captures the desired soundness property:

|= 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

Using this definition, the original type soundness property (1) can now be formulated as:

⊢ 𝑒 : 𝑡
|= 𝑒 : 𝑡

(2)

To derive rules for the typing relation ⊢ that satisfy this soundness property by construction, we
aim to calculate properties of the semantic relation |= that have the form

|= 𝑒1 : 𝑡1 . . . |= 𝑒𝑛 : 𝑡𝑛 𝑃

|= 𝑒 : 𝑡
(3)

where 𝑃 is any additional premise that does not refer to |=, which can be used to impose side
conditions such as a value being in a given set, or an expression evaluating to a given value. We
refer to a property of the above form as a semantic typing rule or simply as a rule for |=.
Once we have calculated these rules for |=, we then inductively define the typing relation ⊢ by

rules that have precisely the same form as those for |=, but with |= replaced by ⊢:
⊢ 𝑒1 : 𝑡1 . . . ⊢ 𝑒𝑛 : 𝑡𝑛 𝑃

⊢ 𝑒 : 𝑡
(4)

Because the relation |= occurs only positively in the premises of the rules of form (3), we obtain
a valid inductive definition for ⊢. Moreover, both relations |= and ⊢ satisfy the same collection
of properties, and because ⊢ is defined inductively, it is the smallest such relation. Therefore, we
have ⊢ ⊆ |=, which is precisely the point-free form of the type soundness property (2).
More formally, the above reasoning is justified by the Knaster-Tarski theorem [Tarski 1955].

Define a typing relation R to be a relation between expressions and types. We then translate each
rule of form (3) into a function 𝐹 on typing relations as follows:

|= 𝑒1 : 𝑡1 . . . |= 𝑒𝑛 : 𝑡𝑛 𝑃

|= 𝑒 : 𝑡
↦−→ 𝐹 (R) = {(𝑒, 𝑡) | (𝑒1, 𝑡1) ∈ R ∧ · · · ∧ (𝑒𝑛, 𝑡𝑛) ∈ R ∧ 𝑃}

For example, a rule for integer addition would be translated by:

|= 𝑒1 : Int |= 𝑒2 : Int
|= add 𝑒1 𝑒2 : Int

↦−→ 𝐹 (R) = {(add 𝑒1 𝑒2, Int) | (𝑒1, Int) ∈ R ∧ (𝑒2, Int) ∈ R}

Let F be the pointwise union of all such functions. Crucially, F is monotonic with respect to the
inclusion ordering ⊆ on relations, because the rules only refer positively to |= in the premises.
A typing relation R satisfies the rules iff F (R) ⊆ R, which means that R is a pre-fixpoint of F .
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Because |= satisfies the rules, we have that |= is a pre-fixpoint of F . Moreover, by Knaster-Tarski,
we know that F has a unique least pre-fixpoint, which we denote by ⊢. Therefore, ⊢ is well-defined,
and because ⊢ is the least pre-fixpoint, we have ⊢ ⊆ |=. In the remainder of the article, we show
how the above ideas can be used to obtain sound type systems by calculation.

2.3 Calculating a Type System
We now proceed to calculate a semantic typing rule for each rule of the evaluation relation as
follows: we start with a term of the form |= 𝑒 : 𝑡 , where 𝑒 is the expression being evaluated, and
seek to strengthen it into a conjunction of terms of the form |= 𝑒𝑖 : 𝑡𝑖 together with an optional
additional premise 𝑃 that does not refer to |=, thus matching the premise of the required form (3)
for semantic typing rules. First of all, the case for values simplifies to a premise that on its own
establishes the desired result, i.e. no assumptions involving |= itself are required.

Case:
𝑣 ⇓ 𝑣

|= 𝑣 : 𝑡
⇔ { definition of |= }

∃𝑣 ′ . 𝑣 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑣 ′ . 𝑣 ′ = 𝑣 ∧ 𝑣 ′ ∈ J𝑡K
⇔ { substitute 𝑣 ′ = 𝑣 }

𝑣 ∈ J𝑡K

That is, we have calculated the semantic typing rule

𝑣 ∈ J𝑡K

|= 𝑣 : 𝑡

which we can then instantiate using the definition of the semantic function J−K to give two semantic
typing rules, one for each of the basic types Int and Bool:

𝑛 ∈ Z
|= 𝑛 : Int

𝑏 ∈ {false, true}
|= 𝑏 : Bool

Note that the calculation above actually yields properties that are equivalences, but for the purposes
of our methodology we only require that they are implications, namely rules of the form (3).
The case for addition proceeds similarly, by first using the definitions of |= and ⇓, and then

simplifying the resulting term. Using the semantics of the Int type and separating the two remaining
quantifiers then allows the term to be rewritten into the required conjunctive form.

Case:
𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

add 𝑒 𝑒′ ⇓ 𝑛 + 𝑛′

|= add 𝑒 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . add 𝑒 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑣 . ∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑣 = 𝑛 + 𝑛′ ∧ 𝑣 ∈ J𝑡K
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⇔ { substitute 𝑣 = 𝑛 + 𝑛′ }
∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑛 + 𝑛′ ∈ J𝑡K

⇔
{
𝑛, 𝑛′ ∈ Z by convention, definition of J−K

}
∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑛′ ∈ JIntK ∧ 𝑡 = Int

⇔ { separate quantifiers }
(∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK) ∧ (∃𝑛′ . 𝑒′ ⇓ 𝑛′ ∧ 𝑛′ ∈ JIntK) ∧ 𝑡 = Int

⇔ { definition of |= }
|= 𝑒 : Int ∧ |= 𝑒′ : Int ∧ 𝑡 = Int

That is, we have calculated the semantic typing rule
|= 𝑒 : Int |= 𝑒′ : Int 𝑡 = Int

|= add 𝑒 𝑒′ : 𝑡
which can then be written in a simpler but equivalent form as:

|= 𝑒 : Int |= 𝑒′ : Int
|= add 𝑒 𝑒′ : Int

We often apply similar simplifications to the calculated semantic typing rules.
Finally, for conditionals there are two cases, depending on whether the condition is true or false.

The key step is once again a simple quantifier manipulation to obtain terms of the required form.

Case:
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

∃𝑣 . if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ true ∧ 𝑒1 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { move quantifier inside }
𝑒 ⇓ true ∧ (∃𝑣 . 𝑒1 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K)

⇔ { definition of |= }
𝑒 ⇓ true ∧ |= 𝑒1 : 𝑡

Case:
𝑒 ⇓ false 𝑒2 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

∃𝑣 . if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ false ∧ 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { move quantifier inside }
𝑒 ⇓ false ∧ (∃𝑣 . 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K)

⇔ { definition of |= }
𝑒 ⇓ false ∧ |= 𝑒2 : 𝑡

That is, we have calculated the following semantic typing rules:

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓ false |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Given all the calculated semantic typing rules for |=, we can now simply replace |= by ⊢ in each
rule and thereby obtain an inductive definition for a type system that is guaranteed to be sound by
construction. The resulting type system is given in Figure 1.
The derived system is also as general as possible with respect to the soundness property from

which it was obtained. In particular, every step in the calculation of rules for |= that give rise to
the system is an equivalence, except for the two cases for conditionals, which have one reverse
implication step when the condition is either true or false. In this manner, we are not ‘losing
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𝑛 ∈ Z
⊢ 𝑛 : Int

𝑏 ∈ {false, true}
⊢ 𝑏 : Bool

⊢ 𝑒 : Int ⊢ 𝑒′ : Int
⊢ add 𝑒 𝑒′ : Int

𝑒 ⇓ true ⊢ 𝑒1 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓ false ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Fig. 1. Derived type system for the conditional language.

information’ in the calculations by unnecessarily strengthening the term being manipulated, and
hence obtain a type system that is maximally general. Indeed, for this simple language, type
soundness is actually an equivalence, i.e. the derived type system is both sound and complete.

2.4 Other Typing Rules
While the derived typing rules in Figure 1 are as general as possible, they also go beyond what
we might normally expect for a type system for this language, in two ways. First of all, the rules
for conditionals depend on the value of the condition, i.e. whether it is true or false, rather than
just depending on its type. And secondly, the rules allow the unused branch of a conditional to be
ill-typed, as there are no premises for the unused branches in the typing rules.
However, we can use the rules that we derived for the semantic typing relation |= to derive

another valid rule that avoids these issues. In particular, we can start with the conjunction of the two
derived rules for conditionals, and transform these into another rule. Note that when we perform
logical reasoning in the premise of a rule, contravariance leads the overall logical implication to
reverse direction, as it does in the third calculation step below.

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡 }
𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⇔ { combine into one rule }
(𝑒 ⇓ true ∧ |= 𝑒1 : 𝑡) ∨ (𝑒 ⇓ false ∧ |= 𝑒2 : 𝑡)

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇒ { bring evaluation terms together }

(𝑒 ⇓ true ∨ 𝑒 ⇓ false) |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⇔
{
definition of J−K

}
(∃𝑣 .𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ JBoolK) |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

|= 𝑒 : Bool |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Hence, we may replace the earlier two syntactic typing rules for conditionals with the following
single rule, which does not require evaluating the condition and ensures that both branches are
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well-typed. This is the kind of rule that is, for example, found in languages such as Haskell.

⊢ 𝑒 : Bool ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

As previously, our methodology ensures that the resulting typing system is sound by construction.
Being able to use previously derived semantic typing rules to derive new syntactic rules in this
manner is an important benefit of our calculational methodology.
As another example of this idea, we can combine the two original rules for conditionals into a

single rule that still allows the two branches to have different types:

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { add extra premise to each rule }
𝑒 ⇓ true |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
∧

𝑒 ⇓ false |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇔ { combine into one rule using a conditional }
𝑒 ⇓ 𝑏 |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : if 𝑏 then 𝑡 else 𝑡 ′

⇔ { replace conditional by a function }
𝑒 ⇓ 𝑏 |= 𝑒1 : 𝑇 true |= 𝑒2 : 𝑇 false

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑇 𝑏

The function𝑇 introduced in the final step maps logical values to types. Hence, we may replace the
earlier two syntactic typing rules for conditionals with the following single rule, which enforces
that both branches are well-typed, but allows them to have different types:

𝑒 ⇓ 𝑏 ⊢ 𝑒1 : 𝑇 true ⊢ 𝑒2 : 𝑇 false

⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇 𝑏

This rule can be seen as a weak form of the kind of typing rule that is found in dependently-typed
languages such as Agda. The difference is that, in our setting,𝑇 is a meta-level function rather than
a term in the source language. Once again, being able to derive such a typing rule in a principled
manner is a key benefit of our calculational approach.

2.5 Reflection
We conclude this section with some reflective remarks on our new methodology.

Methodology. We have shown how a sound-by-construction type system for the conditional
language can be developed using a four-step process, which is summarised below:

1. Define a deterministic big-step semantics for the language;
2. Define a semantic typing relation |= that captures the desired soundness property;
3. Calculate rules of |= that have the form (3) of a strictly positive inference rule;
4. Obtain a sound type system by interpreting the rules of |= as inductive rules for ⊢.

In the third step, we calculated one semantic typing rule for each evaluation rule. Subsequently, the
derived semantic typing rules can be subjected to further calculation to obtain rules of a preferable
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form or to explore alternative rules. For example, we simplified the rule for addition, and we
conjunctively combined multiple rules for conditionals and then simplified the result.

Calculation process. The derived typing rules for the conditional language are standard, and in
themselves unsurprising. But as noted in the introductory section, our interest is in the process
by which type systems can be derived, rather than just the resulting systems. In particular, the
rules were obtained by systematic calculation, driven by the desire to ensure that type soundness
is satisfied by construction. Our methodology also provides a principled way to explore alternative
design choices. For example, we showed how the original typing rules for conditionals can be
combined to calculate two different kinds of typing rules that enforce well-typing of both conditional
branches. We will see further examples of this idea later on.

Non-inductive reasoning. The calculation of rules for the semantic typing relation |= from which
the typing rules were derived did not require any form of induction. Rather, the calculations proceed
by simply applying definitions, using logical properties, and manipulating quantifiers. Induction
only plays a role once we have derived suitable rules for |=, after which we then inductively define
the typing relation ⊢ as the least relation satisfying these rules. In this manner, we can focus on
the essential, non-inductive parts of the reasoning, with the use of induction being built-in to our
methodology rather than having to be manually applied.

Semantic type soundness. A popular approach to establishing type soundness is based on the
syntactic properties of progress and preservation [Wright and Felleisen 1994]. Here we use the
approach of semantic type soundness, based on a denotational interpretation of types, which
has seen a recent resurgence [Timany et al. 2024]. In addition to avoiding the need for inductive
reasoning, as noted above, this approach enables moremodular reasoning. For instance, the semantic
approach allows the two cases for conditionals to be treated separately, whereas in the syntactic
approach these usually need to be considered together, which leads to more cumbersome reasoning.
As we will see, the semantic approach also scales elegantly to more sophisticated languages.

Mechanical formalisation. All the calculations in this section, and the rest of the article, have
been formalised in the Agda proof assistant. The formalisation is straightforward, with the rules
that define the typing relation ⊢ being implemented as an inductive family, and the soundness
proof then obtained by induction over this family, where each case of the induction is precisely the
corresponding semantic typing rule. The Agda code is freely available as supplementary material,
and includes additional commentary on how the results are formalised.

3 Checked Exceptions
As a second example of our approach to calculating type systems, we now extend the conditional
language from section 2 with support for throwing and catching an exception:

𝑒 ::= 𝑣 | add 𝑒 𝑒 | if 𝑒 then 𝑒 else 𝑒 | try 𝑒 catch 𝑒 𝑣 ::= 𝑛 | 𝑏 | throw

As previously, 𝑛 is an integer and 𝑏 is a logical value. Intuitively, the new value throw represents
an exception that has been thrown, while an expression try 𝑒 catch 𝑒′ behaves as the expression 𝑒

unless it throws an exception, in which case it behaves as the handler expression 𝑒′. The semantics
of the language is formally defined by the following evaluation rules:

𝑣 ⇓ 𝑣

𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

add 𝑒 𝑒′ ⇓ 𝑛 + 𝑛′
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

𝑒 ⇓ false 𝑒2 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣
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𝑒 ⇓ throw

add 𝑒 𝑒′ ⇓ throw

𝑒 ⇓ 𝑛 𝑒′ ⇓ throw

add 𝑒 𝑒′ ⇓ throw

𝑒 ⇓ throw

if 𝑒 then 𝑒1 else 𝑒2 ⇓ throw

𝑒 ⇓ throw 𝑒′ ⇓ 𝑣

try 𝑒 catch 𝑒′ ⇓ 𝑣

𝑒 ⇓ 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓ 𝑣

The first four rules are the same as before. The five new rules that follow specify that addition
propagates an exception thrown in either argument, conditionals propagate an exception thrown in
their first argument, and try/catch handles an exception thrown in its first argument by returning
the value of its second argument, and otherwise simply returns the value of the first.

We now extend the language of types to deal with exceptions. The approach we take is inspired
by checked exceptions in Java [Gosling et al. 1996], where the signature for a method declares any
exceptions that may be thrown in its body. To apply this idea in our setting, we extend the language
of types with an operation ? that captures the possibility of an exception being thrown:

𝑡 ::= Int | Bool | 𝑡?
The intuition is that an expression of type 𝑡? either evaluates to a value of type 𝑡 , or results in an
exception being thrown. This idea is formalised by extending the semantic function J−K that maps
each type to the set of values it represents as follows:

JIntK = Z JBoolK = {false, true} J𝑡?K = J𝑡K ∪ {throw}
Note that multiple uses of ? have no effect as it is semantically idempotent, i.e. J(𝑡?)?K = J𝑡?K. The
semantic typing relation |= is then defined in the same way as previously,

|= 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

and the desired type soundness property also remains the same:
⊢ 𝑒 : 𝑡
|= 𝑒 : 𝑡

3.1 Calculating a Type System
Prior to calculating typing rules for the language, we observe that because J𝑡?K is by definition
a superset of J𝑡K, the semantics for types naturally induces a subtyping relation ≤ defined as the
least partial ordering satisfying 𝑡 ≤ 𝑡?. Then we have that 𝑡 ≤ 𝑡 ′ implies J𝑡K ⊆ J𝑡 ′K, and thus we
immediately obtain the following subtyping rule for the |= relation:

|= 𝑒 : 𝑡 𝑡 ≤ 𝑡 ′

|= 𝑒 : 𝑡 ′
(5)

To derive rules for the typing relation ⊢ that satisfy the soundness property by construction,
we use the methodology introduced in section 2 and first calculate rules for the semantic typing
relation |=. In particular, for each rule in our evaluation semantics, we seek to strengthen the term
|= 𝑒 : 𝑡 , where 𝑒 is the expression being evaluated, into a conjunction of terms of the form |= 𝑒𝑖 : 𝑡𝑖
together with an optional additional premise 𝑃 that does not refer to |=.

Because the first four rules of the evaluation semantics are the same as previously, in these cases
we derive the same rules for |=. In the case of values, instantiating the derived rule

𝑣 ∈ J𝑡K

|= 𝑣 : 𝑡
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using the semantic definition J𝑡?K = J𝑡K ∪ {throw} for the new type 𝑡? that deals with exceptions,
and then simplifying, we obtain the following rule for the exceptional value throw:

|= throw : 𝑡?
Now we consider the new rules that specify that addition propagates an exception thrown in

either argument. In each case, we use the fact that throw ∈ J𝑡K means that the type 𝑡 must be of
the form 𝑡 ′?, because ? is the only means of introducing the value throw into a semantic type.

Case:
𝑒 ⇓ throw

add 𝑒 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . add 𝑒 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { 𝑣 = throw, definition of ⇓ }
𝑒 ⇓ throw ∧ throw ∈ J𝑡K

⇔
{
definition of J−K

}
𝑒 ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

Case:
𝑒 ⇓ 𝑛 𝑒′ ⇓ throw

add 𝑒 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . add 𝑒 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { 𝑣 = throw, definition of ⇓ }

∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ throw ∧ throw ∈ J𝑡K
⇔ { move quantifier inside }

(∃𝑛. 𝑒 ⇓ 𝑛) ∧ 𝑒′ ⇓ throw ∧ throw ∈ J𝑡K

⇔
{
𝑛 ∈ Z by convention, definition of J−K

}
(∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK) ∧ 𝑒′ ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

⇔ { definition of |= }
|= 𝑒 : Int ∧ 𝑒′ ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

That is, we have calculated the following semantic typing rules:

𝑒 ⇓ throw ∃𝑡 ′ . 𝑡 = 𝑡 ′?
|= add 𝑒 𝑒′ : 𝑡

|= 𝑒 : Int 𝑒′ ⇓ throw ∃𝑡 ′ . 𝑡 = 𝑡 ′?
|= add 𝑒 𝑒′ : 𝑡

By simple calculation, we can transform each of the above rules into an equivalent form that
incorporates the equality premise 𝑡 = 𝑡 ′? into the conclusion:

𝑒 ⇓ throw ∃𝑡 ′ . 𝑡 = 𝑡 ′?
|= add 𝑒 𝑒′ : 𝑡

⇔ { move quantifier outside }

∀𝑡 ′ .
𝑒 ⇓ throw 𝑡 = 𝑡 ′?

|= add 𝑒 𝑒′ : 𝑡
⇔ { substitute 𝑡 = 𝑡 ′? }

∀𝑡 ′ .
𝑒 ⇓ throw

|= add 𝑒 𝑒′ : 𝑡 ′?

|= 𝑒 : Int 𝑒′ ⇓ throw ∃𝑡 ′ . 𝑡 = 𝑡 ′?
|= add 𝑒 𝑒′ : 𝑡

⇔ { move quantifier outside }

∀𝑡 ′ .
|= 𝑒 : Int 𝑒′ ⇓ throw 𝑡 = 𝑡 ′?

|= add 𝑒 𝑒′ : 𝑡
⇔ { substitute 𝑡 = 𝑡 ′? }

∀𝑡 ′ .
|= 𝑒 : Int 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : 𝑡 ′?
That is, we obtain the following simplified semantic typing rules:

𝑒 ⇓ throw

|= add 𝑒 𝑒′ : 𝑡?
|= 𝑒 : Int 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : 𝑡?
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The case for conditionals propagating an exception thrown in their first argument proceeds in a
similar manner to the case for addition, and results in the following semantic typing rule:

𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
Finally, we consider the two rules that define the semantics for try/catch. The calculation for

the first rule uses a simple quantifier manipulation to allow the term to be rewritten into the
required form using |=, while the second rule uses the fact that evaluation is deterministic, i.e. every
expression has at most one value, to allow a quantifier to be split into two parts:

Case:
𝑒 ⇓ throw 𝑒′ ⇓ 𝑣

try 𝑒 catch 𝑒′ ⇓ 𝑣

|= try 𝑒 catch 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . try 𝑒 catch 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ throw ∧ 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { move quantifier inside }
𝑒 ⇓ throw ∧ (∃𝑣 . 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K)

⇔ { definition of |= }
𝑒 ⇓ throw ∧ |= 𝑒′ : 𝑡

Case:
𝑒 ⇓ 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓ 𝑣

|= try 𝑒 catch 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . try 𝑒 catch 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw ∧ 𝑣 ∈ J𝑡K
⇔ { split quantifier, ⇓ is deterministic }

(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K) ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)
⇔ { definition of |= }

|= 𝑒 : 𝑡 ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)

That is, we have calculated the following semantic typing rules:

𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡

We have now derived a semantic typing rule for each new evaluation rule, and can therefore read
off a type system by simply replacing |= by ⊢ in each semantic typing rule. However, the resulting
type system utilises the evaluation semantics ⇓, in particular by having premises that check if an
expression throws an exception or not. As before, however, we can avoid this issue by transforming
the existing rules into other valid rules that do not involve evaluation.

3.2 Other Typing Rules
We start with the two derived semantic typing rules for conditionals that cover the cases when the
condition throws an exception, and when it is a logical value. The transformation proceeds by first
making an instantiation that brings the conclusion of each rule into the same form to allow them
to be combined, and then simplifying the resulting rule:

𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
∧

|= 𝑒 : Bool |= 𝑒1 : 𝑡 ′ |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡? }
𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
∧

|= 𝑒 : Bool |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
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⇔ { combine into one rule }
𝑒 ⇓ throw ∨ (|= 𝑒 : Bool ∧ |= 𝑒1 : 𝑡? ∧ |= 𝑒2 : 𝑡?)

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
⇒ { bring 𝑒 terms together }

(𝑒 ⇓ throw ∨ |= 𝑒 : Bool) |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⇔
{
definition of |= and J−K

}
|= 𝑒 : Bool? |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

Next, we consider the semantic typing rules for addition, for which the transformation proceeds
by once again making the conclusions into the same form, then combining and simplifying:

𝑒 ⇓ throw

|= add 𝑒 𝑒′ : 𝑡?
∧

|= 𝑒 : Int 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : 𝑡 ′?
∧

|= 𝑒 : Int |= 𝑒′ : Int
|= add 𝑒 𝑒′ : Int

⇒ { instantiate 𝑡 = 𝑡 ′ = Int, rule (5) with subtyping Int ≤ Int? }
𝑒 ⇓ throw

|= add 𝑒 𝑒′ : Int?
∧

|= 𝑒 : Int 𝑒′ ⇓ throw

|= add 𝑒 𝑒′ : Int?
∧

|= 𝑒 : Int |= 𝑒′ : Int
|= add 𝑒 𝑒′ : Int?

⇔ { combine into one rule }
𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ 𝑒′ ⇓ throw) ∨ (|= 𝑒 : Int ∧ |= 𝑒′ : Int)

|= add 𝑒 𝑒′ : Int?
⇔ { factor out common term }

𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ (𝑒′ ⇓ throw ∨ |= 𝑒′ : Int))
|= add 𝑒 𝑒′ : Int?

⇔
{
definition of |= and J−K

}
𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ |= 𝑒′ : Int?)

|= add 𝑒 𝑒′ : Int?
⇒ { bring 𝑒 terms together }

(𝑒 ⇓ throw ∨ |= 𝑒 : Int) |= 𝑒′ : Int?
|= add 𝑒 𝑒′ : Int?

⇔
{
definition of |= and J−K

}
|= 𝑒 : Int? |= 𝑒′ : Int?

|= add 𝑒 𝑒′ : Int?

Finally, we consider the semantic typing rules for try/catch, from which we can derive a rule
that covers the case when the first argument may throw an exception:

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
∧

𝑒 ⇓ throw |= 𝑒′ : 𝑡 ′

|= try 𝑒 catch 𝑒′ : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡 }
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|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
∧

𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

⇔ { combine into one rule }
(|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw) ∨ (𝑒 ⇓ throw ∧ |= 𝑒′ : 𝑡)

|= try 𝑒 catch 𝑒′ : 𝑡
⇒ { bring 𝑒 terms together }

(|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw) ∨ 𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

⇔ { simplify first premise }
|= 𝑒 : 𝑡? |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

The final step in this calculation is justified by the following reasoning, which allows the first
premise in the rule to be written in an equivalent but simpler form:

|= 𝑒 : 𝑡?
⇔ { definition of |= }

∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡?K

⇔
{
definition of J−K

}
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ ((𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ 𝑣 = throw)

⇔ { distributivity }
(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 = throw)

⇔ { eliminate second quantifier }
(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ 𝑒 ⇓ throw

⇔ { split quantifier, ⇓ is deterministic }
((∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K) ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)) ∨ 𝑒 ⇓ throw

⇔ { definition of |= }
(|= 𝑒 : 𝑡 ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)) ∨ 𝑒 ⇓ throw

We also get a semantic typing rule for when the first argument cannot throw an exception, which
only requires transforming the second derived rule into a form that does not use evaluation:

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
⇒ { transform premises }

|= 𝑒 : 𝑡 ¬(∃𝑡 ′ . 𝑡 = 𝑡 ′?)
|= try 𝑒 catch 𝑒′ : 𝑡

The transformation of the premises is justified as follows:

|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw

⇔ { definition of |= }
(∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K) ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw
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𝑛 ∈ Z
⊢ 𝑛 : Int

𝑏 ∈ {false, true}
⊢ 𝑏 : Bool ⊢ throw : 𝑡?

⊢ 𝑒 : Int ⊢ 𝑒′ : Int
⊢ add 𝑒 𝑒′ : Int

⊢ 𝑒 : Int? ⊢ 𝑒′ : Int?
⊢ add 𝑒 𝑒′ : Int?

⊢ 𝑒 : Bool ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⊢ 𝑒 : Bool? ⊢ 𝑒1 : 𝑡? ⊢ 𝑒2 : 𝑡?
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⊢ 𝑒 : 𝑡? ⊢ 𝑒′ : 𝑡
⊢ try 𝑒 catch 𝑒′ : 𝑡

⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑡 ′?
⊢ try 𝑒 catch 𝑒′ : 𝑡

⊢ 𝑒 : 𝑡 𝑡 ≤ 𝑡 ′

⊢ 𝑒 : 𝑡 ′

Fig. 2. Derived type system for checked exceptions.

⇔ { ⇓ is deterministic }
∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K ∧ 𝑣 ′ ≠ throw

⇐
{
definition of J−K

}
∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K ∧ ¬∃𝑡 ′ . 𝑡 = 𝑡 ′?

⇔ { move first quantifier inside }
(∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K) ∧ ¬∃𝑡 ′ . 𝑡 = 𝑡 ′?

⇔ { definition of |= }
|= 𝑒 : 𝑡 ∧ ¬(∃𝑡 ′ . 𝑡 = 𝑡 ′?)

Given the calculated semantic typing rules for |=, we can now simply replace |= by ⊢ in each rule
and thereby obtain an inductive definition for a type system that is, by the Knaster-Tarski theorem,
guaranteed to be sound by construction. The resulting type system is given in Figure 2.
For example, according to the derived typing rules, the expression 𝑒 = if true then 1 else throw

has type Int?, which means it either returns an integer or throws an exception, whereas try 𝑒 catch 2
has type Int, which captures the fact that try/catch allows us to recover from the possibility of an
exception being thrown in 𝑒 and thereby guarantee to return an integer.

3.3 Reflection
Checked exceptions. While the simple conditional language served to introduce our approach, the

extension to exceptions shows how the approach can be used to derive a non-trivial type system.
In particular, we have derived a subtyping system for checked exceptions in a principled manner,
starting from a type soundness property. It is also possible to derive an alternative type system that
captures that an expression will certainly, rather than possibly, throw an exception. However, we
chose here to derive a more subtle type system that implements checked exceptions.

Well-typed handlers. The second derived rule for try/catch allows the unused handler 𝑒′ to be
ill-typed if the main expression 𝑒 cannot throw an exception, i.e. its type does not use ?:

⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑡 ′?
⊢ try 𝑒 catch 𝑒′ : 𝑡

This rule is perfectly valid, as all we are aiming for is type soundness, and the above guarantees
this. However, if we wish to ensure handlers are always well-typed, we can derive a stronger rule
that achieves this by simply adding the premise ⊢ 𝑒′ : 𝑡 ′′, which ensures 𝑒′ is well-typed.
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Additional rules. One might ask why we don’t need additional rules for other argument com-
binations, such as attempting to add expressions of type Int? and Int. The answer is that the
existing rules are sufficient to derive such additional rules by subtyping. In particular, using the
fact that 𝑡 ≤ 𝑡?, the following rules can be derived by subtyping from the existing rules:

⊢ 𝑒 : Int? ⊢ 𝑒′ : Int
⊢ add 𝑒 𝑒′ : Int?

⊢ 𝑒 : Int ⊢ 𝑒′ : Int?
⊢ add 𝑒 𝑒′ : Int?

⊢ 𝑒 : Bool? ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⊢ 𝑒 : 𝑡? ⊢ 𝑒′ : 𝑡?
⊢ try 𝑒 catch 𝑒′ : 𝑡?

4 Lambda Calculus
To put our methodology to the test with a more sophisticated language, we now consider a call-by-
value lambda calculus extended with integers and addition:

𝑒 ::= 𝑛 | add 𝑒 𝑒 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒
We assume 𝑛 ranges over the integers as previously, and 𝑥 ranges over an (infinite) set of variable
names. The previous languages were simple enough that we could have type-checked expressions
by simply evaluating them and checking if the result is in a semantic type. This is not possible once
we have functions, or even just free variables, both of which we have in the lambda calculus. But
as we will see, the lessons learned from the previous languages still apply and allow us to calculate
a type system, by refining the methodology to take account of variables.
To evaluate an expression that may contain free variables, we use a variable environment 𝛾 , a

finite mapping from variables to values. We write dom(𝛾) for the domain of an environment 𝛾 , and
𝛾 [𝑥 ↦→ 𝑣] for the environment 𝛾 extended with the mapping 𝑥 ↦→ 𝑣 . A value is either an integer 𝑛
or a function closure consisting of an environment 𝛾 and a lambda abstraction 𝜆𝑥.𝑒 :

𝑣 ::= 𝑛 | ⟨𝛾, 𝜆𝑥 .𝑒⟩
The semantics of the language is given by an evaluation relation 𝑒 ⇓𝛾 𝑣 that specifies when an
expression 𝑒 evaluates in an environment 𝛾 to a value 𝑣 , defined by the following rules:

𝑛 ⇓𝛾 𝑛

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 𝑛′

add 𝑒 𝑒′ ⇓𝛾 𝑛 + 𝑛′
𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥)

𝜆𝑥 .𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤

The rules for integers and addition are similar to previously, with the addition of an environment.
Variables are simply looked up in the environment, with a premise to ensure they are defined. In
turn, abstractions are evaluated to a closure ⟨𝛾, 𝜆𝑥 .𝑒⟩, which captures the environment 𝛾 in which
the abstraction is evaluated, the variable 𝑥 that is bound by the abstraction, and the body 𝑒 of the
abstraction. And finally, when applying a function, we first evaluate it to such a closure with an
environment 𝛾 ′, and then evaluate the body of the closure in an extended environment 𝛾 ′ [𝑥 ↦→ 𝑣],
where 𝑣 is the value that was passed as an argument to the function.

The language of types consists of integers and function types:

𝑡 ::= Int | 𝑡 → 𝑡

The semantic type corresponding to Int is, as before, the set of integers Z. The semantic type of
functions from 𝑠 to 𝑡 formalises the intuition that a closure of this type must be able to take any
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value of semantic type J𝑠K and produce a value of semantic type J𝑡K:

JIntK = Z J𝑠 → 𝑡K =
{
⟨𝛾, 𝜆𝑥 .𝑒⟩

��∀𝑣 ∈ J𝑠K . ∃𝑤. 𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧ 𝑤 ∈ J𝑡K
}

The definition for the semantic function type J𝑠 → 𝑡K is standard, but we’ll return to this in the
reflection section and show how it can also be calculated if desired.
Because the evaluation relation now takes an environment 𝛾 , the semantic typing relation |=

must also account for 𝛾 , which we achieve in two steps. We first define an evaluation typing relation
𝛾 Z⇒ 𝑒 : 𝑡 , which states that 𝑒 evaluates to a value of semantic type 𝑡 in an environment 𝛾 :

𝛾 Z⇒ 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K

This relation only partially abstracts from concrete values to semantic types. In particular, the value 𝑣
produced by an evaluation 𝑒 ⇓𝛾 𝑣 is abstracted to the semantic type J𝑡K, but the environment 𝛾 still
remains. To abstract from 𝛾 as well, we extend the definition of semantic types to semantic typing
contexts. A (syntactic) typing context Γ is a finite mapping from variables to types, typically written
in the form 𝑥1 : 𝑡1, . . . , 𝑥𝑛 : 𝑡𝑛 . For each typing context Γ, we define a corresponding semantic
typing context JΓK by recursion on the structure of Γ:

J·K = {∅} JΓ, 𝑥 : 𝑡K =
{
𝛾 [𝑥 ↦→ 𝑣]

��𝛾 ∈ JΓK ∧ 𝑣 ∈ J𝑡K
}

The empty typing context · is assigned the semantic typing context {∅}, which only contains the
empty environment ∅. The extension of a typing context Γ with a variable 𝑥 : 𝑡 , written Γ, 𝑥 : 𝑡 ,
is represented in the semantic typing context with corresponding environments 𝛾 extended with
mappings of the form 𝑥 ↦→ 𝑣 . We can characterise semantic typing contexts more succinctly as
consisting of those environments that map variables to semantically well-typed values:

𝑥 : 𝑡 ∈ Γ ⇒ 𝛾 (𝑥) ∈ J𝑡K for all 𝛾 ∈ JΓK (6)

This property follows by a straightforward induction on Γ. Finally, we can now define the semantic
typing relation in terms of these semantic typing contexts,

Γ |= 𝑒 : 𝑡
def⇐⇒ ∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑒 : 𝑡

and the desired type soundness property can then be formulated in the same way as previously,
with the addition of a typing context to deal with variables:

Γ ⊢ 𝑒 : 𝑡
Γ |= 𝑒 : 𝑡

4.1 Calculating a Type System
We could now calculate semantic typing rules in a manner similar to previously. However, we use a
slightly different approach here, which simplifies some calculations and which will prove essential
for combining rules. Instead of directly using the semantic typing relation Γ |= 𝑒 : 𝑡 , we first use
the evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡 and aim to derive properties of the form

𝑄

𝛾 Z⇒ 𝑒 : 𝑡
(7)

where the premise 𝑄 refers to Z⇒ only in strictly positive positions, i.e. neither subject to negation
nor occurring on the left-hand side of an implication. We refer to a property of the above form
as an evaluation typing rule or simply as a rule for Z⇒. Only afterwards, we will perform a final
abstraction step from variable environments to typing contexts to obtain semantic typing rules of
the following desired form, where 𝑃 is any additional premise that does not refer to |=.
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Γ |= 𝑒1 : 𝑡1 . . . Γ |= 𝑒𝑛 : 𝑡𝑛 𝑃

Γ |= 𝑒 : 𝑡
(8)

The form (7) for derived rules for Z⇒ is intentionally more permissive than the form (8) for |=.
The derived rules for Z⇒ are an intermediate result from which the rules for |= are subsequently
derived via further calculation. The stricter form for rules for |= ensures that they conform with
the requirements of our methodology, which we use to obtain the sound-by-construction typing
rules. While this two-step process is not strictly necessary for the lambda calculus language we
consider here, it will be crucial for more complex languages as we will see in section 5.

The calculation proceeds again by considering each rule of the evaluation semantics, seeking to
strengthen a term of the form 𝛾 Z⇒ 𝑒 : 𝑡 , where 𝑒 is the expression being evaluated, into a form
that matches the premise of (7). Because the semantics for integers and addition are essentially the
same as previously, the calculations for these rules are also essentially the same, apart from the
addition of an environment, and result in the following evaluation typing rules:

𝛾 Z⇒ 𝑛 : Int
𝛾 Z⇒ 𝑒 : Int 𝛾 Z⇒ 𝑒′ : Int

𝛾 Z⇒ add 𝑒 𝑒′ : Int
The new cases for variables and lambda abstraction are straightforward.

Case:
𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥)

𝛾 Z⇒ 𝑥 : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑥 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }
𝛾 (𝑥) ∈ J𝑡K

Case:
𝜆𝑥 .𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩

𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝜆𝑥 .𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }

⟨𝛾, 𝜆𝑥 .𝑒⟩ ∈ J𝑡K

⇔
{
definition of J−K

}
∃𝑡1, 𝑡2. 𝑡 = 𝑡1 → 𝑡2 ∧ ∀𝑣 ∈ J𝑡1K . ∃𝑤. 𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡2K

⇔ { definition of Z⇒ }
∃𝑡1, 𝑡2. 𝑡 = 𝑡1 → 𝑡2 ∧ ∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

After the usual simplification that incorporates the equality premise 𝑡 = 𝑡1 → 𝑡2 into the conclusion,
we have calculated the following rules, both of which have the desired form (7):

𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

𝛾 Z⇒ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

All that remains now is the case for function application.

Case:
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
⇔ { definition of Z⇒ }

∃𝑤. 𝑒 𝑒′ ⇓𝛾 𝑤 ∧𝑤 ∈ J𝑡K
⇔ { definition of ⇓ }
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∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

After applying the definition of Z⇒ and ⇓ as in the other cases, we appear to be stuck due to the last
two conjuncts 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 and𝑤 ∈ J𝑡K. Because both depend on 𝑒′′ and 𝛾 ′, they are not suitable
to be included in an evaluation typing rule. In order to discharge these conjuncts, we extend the
statement with additional assumptions about the semantic type of the closure ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ and the
value 𝑣 . Taken together, these two assumptions will precisely discharge the two conjuncts noted
above: given ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K, the definition of J𝑠 → 𝑡K implies that 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤
and𝑤 ∈ J𝑡K. With this insight, we can resume and complete the calculation:

∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

⇐
{
strengthen with ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K

}
∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K
⇔ { move quantifier for𝑤 inside }

∃𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K
∧ ∃𝑤. 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

⇔
{
by definition, ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K imply ∃𝑤. 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

}
∃𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

⇔ { move quantifiers inside }
∃𝑠 . (∃𝛾 ′, 𝑥, 𝑒′′ . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K) ∧ ∃𝑣 . 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

⇔
{
definition of Z⇒ and J𝑠 → 𝑡K

}
∃𝑠 . 𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 ∧ 𝛾 Z⇒ 𝑒′ : 𝑠

After an additional calculation step that moves the existential quantifier out of the premise, we
have calculated the following evaluation typing rule:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡

Finally, we take the derived evaluation typing rules and abstract from the environment 𝛾 to
obtain semantic typing rules. Three of the calculated evaluation typing rules, namely for integers,
addition, and function application, are of the form:

𝛾 Z⇒ 𝑒1 : 𝑡1 . . . 𝛾 Z⇒ 𝑒𝑛 : 𝑡𝑛
𝛾 Z⇒ 𝑒 : 𝑡

(9)

Each such evaluation typing rule implies a corresponding semantic typing rule of form (3).

Γ |= 𝑒1 : 𝑡1 . . . Γ |= 𝑒𝑛 : 𝑡𝑛
Γ |= 𝑒 : 𝑡

To prove this transformation step sound, we assume (9) and Γ |= 𝑒1 : 𝑡1 ∧ · · · ∧ Γ |= 𝑒𝑛 : 𝑡𝑛 , and we
must show that Γ |= 𝑒 : 𝑡 . To this end, we assume some environment 𝛾 ∈ JΓK, and must show that
𝛾 Z⇒ 𝑒 : 𝑡 . Because Γ |= 𝑒𝑖 : 𝑡𝑖 and 𝛾 ∈ JΓK, we have by the definition of the semantic typing relation
|= that 𝛾 Z⇒ 𝑒𝑖 : 𝑡𝑖 . Hence, by (9), we have that 𝛾 Z⇒ 𝑒 : 𝑡 .
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Γ ⊢ 𝑛 : Int
Γ ⊢ 𝑒 : Int Γ ⊢ 𝑒′ : Int

Γ ⊢ add 𝑒 𝑒′ : Int
𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠
Γ ⊢ 𝑒 𝑒′ : 𝑡

Fig. 3. Derived type system for the lambda calculus.

Applying this general transformation gives us the following semantic typing rules:

Γ |= 𝑛 : Int
Γ |= 𝑒 : Int Γ |= 𝑒′ : Int

Γ |= add 𝑒 𝑒′ : Int
Γ |= 𝑒 : 𝑠 → 𝑡 Γ |= 𝑒′ : 𝑠

Γ |= 𝑒 𝑒′ : 𝑡

The remaining two calculated evaluation typing rules, namely the rules for variables and lambda
abstraction, do not match the form (9), as we can see here:

𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
(10)

∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2
𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

(11)

However, in both cases, we can easily calculate corresponding semantic typing rules. We start with
the conclusion of the desired semantic typing rule and transform it step by step until we reach a
form suitable for the premise of a semantic typing rule of the form (8):

Γ |= 𝑥 : 𝑡
⇔ { definition of |= }

∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑥 : 𝑡
⇐ { evaluation typing rule (10) }

∀𝛾 ∈ JΓK . 𝛾 (𝑥) ∈ J𝑡K
⇐ { property (6) }

∀𝛾 ∈ JΓK . 𝑥 : 𝑡 ∈ Γ

⇔
{
eliminate quantifier, JΓK is non-empty

}
𝑥 : 𝑡 ∈ Γ

Γ |= 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

⇔ { definition of |= }
∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

⇐ { evaluation typing rule (11) }
∀𝛾 ∈ JΓK . ∀𝑣 ∈ J𝑡1K .𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

⇔
{
definition of JΓ, 𝑥 : 𝑡1K

}
∀𝛾 ′ ∈ JΓ, 𝑥 : 𝑡1K . 𝛾 ′ Z⇒ 𝑒 : 𝑡2

⇔ { definition of |= }
Γ, 𝑥 : 𝑡1 |= 𝑒 : 𝑡2

That is, we have obtained the following semantic typing rules:

𝑥 : 𝑡 ∈ Γ

Γ |= 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 |= 𝑒 : 𝑡2

Γ |= 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

Given the calculated semantic typing rules, we now obtain sound-by-construction syntactic
typing rules for our language by simply replacing |= with ⊢, as summarised in Figure 3. These are
the standard typing rules for simply typed lambda calculus. But while the rules are standard, the
way we obtained them is not, namely by systematic calculation that guarantees soundness. The
same systematic calculation technique applies to languages with more complex combinations of
features where designing a type system by hand is more challenging and would still require a
separate soundness proof. We will see an example of this in section 5.

4.2 Reflection
The calculation of the semantic typing rule for application hinges on the definition of the semantic
function type J𝑠 → 𝑡K. While the definition we used is standard, it is interesting to consider if it
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could have been discovered during the calculation, rather than given upfront. If possible, this may
benefit the calculation for more complex languages.
Using the idea of partial specifications from earlier work on compiler calculation [Bahr and

Hutton 2015], we could have started the calculation with a partial definition

J𝑠 → 𝑡K = {⟨𝛾, 𝜆𝑥 .𝑒⟩ | 𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) }
where the predicate 𝑃 is left unspecified. We then aim for the definition of 𝑃 to be discovered
during the calculation. In fact, during the calculation for application, we run into the problem of
having to discharge the conjuncts 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑤 ] 𝑣 and 𝑣 ∈ J𝑡K. The strategy to solve this problem
is to strengthen the statement to include the assumption ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and then use 𝑃 to
discharge the two conjuncts. This is achieved by defining 𝑃 to give exactly these conjuncts:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑤. ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K (12)

This definition for 𝑃 allows the calculation for function application to go through, even though
it ignores the domain type 𝑠 of the function. However, we would get stuck in the calculation for
lambda abstraction, which needs 𝑤 to be semantically well-typed, i.e. 𝑤 ∈ J𝑠′K for some type 𝑠′.
An obvious choice would be to instantiate 𝑠′ = 𝑠 , i.e. to refine 𝑃 so that it assumes𝑤 ∈ J𝑠K:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑤 ∈ J𝑠K . ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K

This definition now matches the semantic type definition used in our calculation in section 4.1
and results in the standard typing rules for simply typed lambda calculus. But we could have also
chosen a different definition of 𝑃 that just assumes𝑤 be semantically typed by any type 𝑠′:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑠′ . ∀𝑤 ∈ J𝑠′K . ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K (13)

With this definition of 𝑃 , the calculations for abstraction and application go through, but they result
in a different type system that requires functions to take values of any type as argument:

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠′

Γ ⊢ 𝑒 𝑒′ : 𝑡
∀𝑠′ . Γ, 𝑥 : 𝑠′ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝜆𝑥 .𝑒 : 𝑠 → 𝑡

This type system is not only unusual, but also not very useful: it effectively prohibits the use of any
function argument, because no assumption can be made about its type.

The above reasoning shows that the calculational approach does allow us to discover the definition
of the semantic function type. But this process may require some iteration, because we might
discover a definition that leads to a dead end, such as with (12), or to an impractical type system,
such as with (13). Such an iterative process is typical in devising type soundness proofs, but with
an important difference: in typical type soundness proofs, adjustments often have to be made both
on the typing rules and the semantic type definition, with the hope that the adjustments will lead
to a soundness proof. In the calculational approach, we only need to adjust the definition of the
semantic type, and we then let calculation lead us to sound-by-construction typing rules.

5 Lambda Calculus with Conditionals and Checked Exceptions
For our final example, we consider the lambda calculus from section 4 extended with conditionals
and checked exceptions in the style of section 3. The syntax and semantics is given in Figure 4.
Designing typing rules that soundly capture the combination of higher-order functions and

checked exceptions is more challenging than for languages with only one of these features. In
contrast, the calculational approach is systematic and modular, and handles this combination
gracefully. To calculate a sound-by-construction type system for this language, we combine the



Sound-By-Construction Type Systems (Functional Pearl) 21

Syntax: 𝑒 ::= 𝑛 | 𝑏 | throw | add 𝑒 𝑒 | if 𝑒 then 𝑒 else 𝑒 | try 𝑒 catch 𝑒 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒
𝑣 ::= 𝑛 | 𝑏 | throw | ⟨𝛾, 𝜆𝑥 .𝑒⟩
𝑡 ::= Int | Bool | 𝑡? | 𝑡 → 𝑡

Evaluation Semantics:

𝑛 ⇓𝛾 𝑛 𝑏 ⇓𝛾 𝑏 throw ⇓𝛾 throw

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 𝑛′

add 𝑒 𝑒′ ⇓𝛾 𝑛 + 𝑛′
𝑒 ⇓𝛾 throw

add 𝑒 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 throw

add 𝑒 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 true 𝑒1 ⇓𝛾 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 𝑣

𝑒 ⇓𝛾 false 𝑒2 ⇓𝛾 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 𝑣

𝑒 ⇓𝛾 throw

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 throw

𝑒 ⇓𝛾 throw 𝑒′ ⇓𝛾 𝑣

try 𝑒 catch 𝑒′ ⇓𝛾 𝑣

𝑒 ⇓𝛾 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓𝛾 𝑣

𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥) 𝜆𝑥 .𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩

𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤

𝑒 ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

Semantic Types: JIntK = Z JBoolK = {false, true} J𝑡?K = J𝑡K ∪ {throw}

J𝑠 → 𝑡K =

{
⟨𝛾, 𝜆𝑥 .𝑒⟩

���∀𝑣 ∈ J𝑠K .∃𝑤.𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K
}

Semantic Contexts: J·K = {∅} JΓ, 𝑥 : 𝑡K =
{
𝛾 [𝑥 ↦→ 𝑣]

��𝛾 ∈ JΓK ∧ 𝑣 ∈ J𝑡K
}

Fig. 4. Syntax and semantics of lambda calculus with conditionals and checked exceptions.

techniques we have learned so far. In fact, the modular reasoning enabled by the semantic approach
to type soundness allows us to reuse previous calculations with little to no modifications.

As with the lambda calculus example in section 4, we define an evaluation typing relation and a
semantic typing relation to capture the desired soundness property:

𝛾 Z⇒ 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K

Γ |= 𝑒 : 𝑡
def⇐⇒ ∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑒 : 𝑡

As previously, we aim to calculate evaluation typing rules of the form

𝑃

𝛾 Z⇒ 𝑒 : 𝑡
where 𝑃 refers to Z⇒ only in strictly positive positions. Once these rules have been calculated, we
can combine them as in sections 2.4 and 3.2 to obtain evaluation typing rules of the desired form,
and then finally transform them into semantic typing rules as in section 4.
We proceed by considering each rule of the evaluation semantics. As observed earlier, the

calculations for integers and addition in section 4 are essentially the same as the calculations in
section 3. Indeed, all calculations in section 3 can be performed for the extended language as well
and result in essentially the same rules, except that we use the evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡
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instead of the semantic typing relation |= 𝑒 : 𝑡 , and the rules refer to a variable environment 𝛾 . For
instance, we can calculate the following evaluation typing rules for conditional expressions:

𝑒 ⇓𝛾 true 𝛾 Z⇒ 𝑒1 : 𝑡
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓𝛾 false 𝛾 Z⇒ 𝑒2 : 𝑡
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓𝛾 throw

𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
(14)

Here it is important that the calculations use the evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡 rather than
the semantic typing relation Γ |= 𝑒 : 𝑡 . In particular, all three of the above rules depend on the
fact that we can directly refer to the variable environment 𝛾 in the premise, which allows us to
state how the expression 𝑒 evaluates in the environment 𝛾 . If we had used semantic typing, the
calculations would have resulted in the following rules instead:

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 true Γ ⊢ 𝑒1 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 false Γ ⊢ 𝑒2 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 throw

Γ |= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
These rules are far more restrictive. For example, the last requires 𝑒 to throw an exception in every
semantically well-typed environment 𝛾 . As a consequence, these rules could not have been used
to derive further rules as in section 3.2. However, with the rules in (14) we can apply the same
reasoning steps as previously to calculate the following rules:

𝛾 Z⇒ 𝑒 : Bool? 𝛾 Z⇒ 𝑒1 : 𝑡? 𝛾 Z⇒ 𝑒2 : 𝑡?
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

All calculations from section 4 also carry over to our extended lambda calculus, except that the
⇔-steps that apply the definition of the evaluation relation become⇐-steps here, because more
than one evaluation rule may now apply to expressions of the same shape. We therefore obtain the
same evaluation typing rules for variables, abstraction and application as previously:

𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

𝛾 Z⇒ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡

The only rules of the semantics for which we cannot directly reuse previous calculations are the
three rules for application. Two of these rules deal with the propagation of exceptions and thus do
not have direct counterparts in our earlier languages. But the calculations for these two cases are
straightforward, by simply applying definitions, and result in the following rules:

𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
(15)

The remaining rule for the semantics of application is similar to the corresponding rule in
section 4 but has the additional side condition 𝑣 ≠ throw. We can therefore reuse the calculation
from that section with only minor changes that simply carry over the side condition, similarly to
the calculation for try/catch in section 3, which results in the following rule:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
(16)

The resulting side condition that 𝑒′ evaluate to a value different from throw reminds us of a similar
condition found in the semantic typing rules for try/catch in section 3. Using the same calculation
argument as in section 3.2, we can derive an evaluation typing rule that replaces this side condition
on the evaluation result with a side condition on the type of 𝑒′:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠 𝑠 not of the form 𝑠′?
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
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𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
∧

𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡3?
∧

𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑠2 𝛾 Z⇒ 𝑒′ : 𝑠1 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑠2
⇒ { instantiate 𝑡3 = 𝑡 and 𝑠2 = 𝑡? }
𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
∧

𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
∧

𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? 𝛾 Z⇒ 𝑒′ : 𝑠1 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇔ { combine into one rule }
𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 ∧ 𝑒′ ⇓𝛾 throw) ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇒ { instantiate 𝑡1 = 𝑠1 and 𝑡2 = 𝑡? }
𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝑒′ ⇓𝛾 throw) ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇔ { distributivity of ∧ over ∨ }
𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ (𝑒′ ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)))

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

⇔
{
definition of J−K and Z⇒

}
𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇒ { bring 𝑒 terms together }
(𝑒 ⇓𝛾 throw ∨ 𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡?) ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

⇔
{
definition of J−K and Z⇒

}
𝛾 Z⇒ 𝑒 : (𝑠1 → 𝑡?)? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

Fig. 5. Calculation to combine evaluation typing rules for application.

This rule is suitable to be turned into a semantic typing rule. However, the original rule (16) can
be used in conjunction with the other two rules for function application in (15) to calculate an
evaluation typing rule for application in the presence of exceptions as shown in Figure 5. That is,
we can derive the following evaluation typing rule:

𝛾 Z⇒ 𝑒 : (𝑠 → 𝑡?)? 𝛾 Z⇒ 𝑒′ : 𝑠?
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

This rule covers the case where both 𝑒 and 𝑒′ may throw an exception, resulting in an application
that may throw an exception. Together with the subtyping rule, this rule also covers the cases
where only one of 𝑒 and 𝑒′ may throw an exception. Note that the function type (𝑠 → 𝑡?)? has the
domain 𝑠 rather than 𝑠? due to the call-by-value semantics: an exception thrown by the argument 𝑒′
of type 𝑠? is propagated as soon as 𝑒′ is evaluated, which happens before the function is called.
Finally, we transform all derived evaluation typing rules into semantic typing rules using the

same argument as in the previous section. From these we then obtain syntactic typing rules by
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𝑛 ∈ Z
Γ ⊢ 𝑛 : Int

𝑏 ∈ {true, false}
Γ ⊢ 𝑏 : Bool Γ ⊢ throw : 𝑡?

Γ ⊢ 𝑒 : Int Γ ⊢ 𝑒′ : Int
Γ ⊢ add 𝑒 𝑒′ : Int

Γ ⊢ 𝑒 : Int? Γ ⊢ 𝑒′ : Int?
Γ ⊢ add 𝑒 𝑒′ : Int?

Γ ⊢ 𝑒 : Bool Γ ⊢ 𝑒1 : 𝑡 Γ ⊢ 𝑒2 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Γ ⊢ 𝑒 : Bool? Γ ⊢ 𝑒1 : 𝑡? Γ ⊢ 𝑒2 : 𝑡?
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

Γ ⊢ 𝑒 : 𝑡? Γ ⊢ 𝑒′ : 𝑡
Γ ⊢ try 𝑒 catch 𝑒′ : 𝑡

Γ ⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑠?
Γ ⊢ try 𝑒 catch 𝑒′ : 𝑡

𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠 𝑠 not of the form 𝑠′?
Γ ⊢ 𝑒 𝑒′ : 𝑡

Γ ⊢ 𝑒 : (𝑠 → 𝑡?)? Γ ⊢ 𝑒′ : 𝑠?
Γ ⊢ 𝑒 𝑒′ : 𝑡?

Γ ⊢ 𝑒 : 𝑠 𝑠 ≤ 𝑡

Γ ⊢ 𝑒 : 𝑡 𝑡 ≤ 𝑡? 𝑡 ≤ 𝑡

𝑠 ≤ 𝑡 ′ 𝑡 ′ ≤ 𝑡

𝑠 ≤ 𝑡

𝑠′ ≤ 𝑠 𝑡 ≤ 𝑡 ′

𝑠 → 𝑡 ≤ 𝑠′ → 𝑡 ′

Fig. 6. Derived type system for lambda calculus with conditionals and checked exceptions.

replacing |= with ⊢. The full set of rules derived is given in Figure 6. We also include the rules for
subtyping, which follow directly from the definition of semantic types.

6 Related Work
To the best of our knowledge, the use of calculational techniques to derive type systems that are
sound by construction has not been previously explored in the literature. However, our approach
builds upon prior work in a number of areas, as discussed below.

Abstract interpretation. Recently, Garby et al. [2025] proposed a methodology for calculating
type checkers. In their approach, a type checker is viewed as a special case of an abstract inter-
preter [Cousot 1997]. In this view, the correctness of a type checker with respect to a functional
semantics is specified as an inequation, which can then be used to calculate the type checker using
(in)equational reasoning principles. Similarly to our approach, their calculation approach avoids
the explicit use of induction. Instead, the type checker and the evaluation semantics are defined as
a fold so that the calculation can exploit a form of fold fusion. However, so far this technique has
not been demonstrated to work for higher-order languages such as the lambda calculus. Moreover,
the outcome of this technique is a type checker, rather than a set of typing rules.

Semantic type soundness. The notion of semantic type soundness was introduced by Milner along
with the notion of type soundness in his seminal paper on polymorphic types [1978]. In this paper,
semantic types are assigned to values and used as a way to prove type soundness. However, the
underlying proof technique goes back even further to Tait’s method to prove strong normalisation
for simply typed lambda calculus [1967]. The use of the |= notation to denote the semantic typing
relation is due to Appel and McAllester [2001], who use this notation to easily translate typing
rules (using ⊢) into semantic typing rules (using |=) that form the lemmas that need to be proved to
show type soundness. We defined the semantic typing relation Γ |= 𝑒 : 𝑡 in terms of the evaluation
typing relation 𝛾 Z⇒ 𝑒 : 𝑡 , which in turn is based on the definition of semantic types J𝑡K. While we
are not aware of a direct counterpart to the evaluation typing relation in the literature, it is closely



Sound-By-Construction Type Systems (Functional Pearl) 25

related to the notion of a term relation (or expression relation), and the corresponding generalisation
of semantic types to relations is therefore often called a value relation [Pitts and Stark 1999].

Categorical logic and type theory. The idea that typing structure emerges from the semantics of a
formal language has a long history in type theory and category theory. In type theory, defining types
behaviourally by their computational content was pioneered by Martin-Löf [1982], and later further
developed in the Nuprl system and its underlying Computational Type Theory (CTT) [Allen et al.
2006; Constable et al. 1986]. Terms in CTT are untyped, and types are defined as specifications of the
intended behaviour of such untyped terms. The type system is then constructed on this semantic
foundation by essentially proving semantic typing rules. The influential work of Lawvere [1969]
showed that reasoning in a category with sufficient structure can be performed using an internal
language of the category, with structure in the category, e.g. adjunctions, giving rise to syntactic
features, e.g. quantifiers, that make up the internal language. This idea has been especially fruitful
in topos theory [Johnstone 2002] and type theory [Seely 1984].

7 Conclusion and Further Work
We have demonstrated how to systematically derive sound-by-construction type systems from a
specification of type soundness. The key idea is to formulate type soundness semantically and to
derive the typing rules as properties of the semantic typing relation. To account for variables in
lambda calculi, we have extended our methodology for simple languages described in Section 2.5
with an additional intermediate semantic typing relation Z⇒, which we call evaluation typing. In
summary, this generalised methodology proceeds in these five steps:

1. Define a deterministic big-step semantics for the language;
2. Define a pair of semantic relations Z⇒ and |= that capture the desired soundness property;
3. Calculate rules of Z⇒ that have the form (7) of a strictly positive inference rule;
4. Use calculated rules of Z⇒ to calculate strictly positive rules of |=;
5. Obtain a sound type system by interpreting the rules of |= as inductive rules for ⊢.

This semantic approach not only makes these calculations feasible, but it also makes them modular.
We can calculate semantic typing rules one language feature at a time, and in some cases we can
reuse semantic typing rules across different languages with shared language features. This modular
approach also carries over to our Agda formalisation of the results.
The semantic approach to type soundness has seen a significant resurgence in recent years

and has produced a rich body of work, including the development of Kripke logical relations to
prove soundness for languages with various forms of effects, and the advancement of formalisation
techniques for mechanising such soundness proofs [Abel et al. 2019]. We believe that by drawing
on this abundance of semantic reasoning techniques, future work can extend our methodology
of calculating sound-by-construction type systems to a wider range of language features such as
non-termination, non-determinism, effectful computations, and polymorphic types. For example,
in preliminary work we have explored how non-termination can be handled using the partiality
monad, and non-determinism by using a more general form of type soundness.
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