
The Calculated Typer
ZAC GARBY, University of Nottingham, United Kingdom
PATRICK BAHR, IT University of Copenhagen, Denmark
GRAHAM HUTTON, University of Nottingham, United Kingdom

We present a calculational approach to the design of type checkers, showing how they can be derived from
behavioural specifications using equational reasoning. In addition, we show how the calculations can be
simplified by taking an algebraic approach based on fold fusion, and further improved by taking a constraint-
based approach to solving and composing fusion preconditions. We illustrate our methodology with three
examples of increasing complexity, starting with a simple expression language, then adding support for
exceptions, and finally considering a version of the lambda calculus.

1 Introduction
Type checking is the process of verifying that programs are constructed in accordance with a
set of typing rules [Pierce 2002]. For example, if we specify that addition requires two integer
arguments and produces an integer result, then the expression 1 + 2 is well-typed because both
arguments are integers, whereas 1 + True is ill-typed because the second argument is not an integer.
Moreover, we can say that the expression 1 + 2 has integer type because it produces an integer
result, while 1 + True has a type error due to its improper construction.
In this article, we focus on the problem of defining type-checking functions that analyse the

structure of a program to determine if it is well-typed. Moreover, if a program is well-typed, the
type-checking function returns the type of the program, and otherwise it returns a type error.
Traditionally, such type checkers are defined by hand based on a pre-determined set of typing rules
that specify valid ways to construct programs. Here we take a different approach, showing how to
calculate type-checking functions directly from specifications of their behaviour.

The starting point for our calculational approach is a semantics for the language being considered,
expressed as an evaluation function. We then formulate a specification that captures the desired
behaviour of the type-checking function, which here means it returns the type of the value that
would be produced if evaluation succeeds, or returns a type error if evaluation may fail due to
the input being badly formed. Finally, we use equational reasoning techniques to calculate an
implementation for the type-checking function that satisfies the specification.

The calculational approach to type checker design has two key benefits. First of all, the resulting
type checkers are correct-by-construction [Backhouse 2003], eliminating the need for separate
correctness proofs. And secondly, the approach provides a systematic way to discover typing rules
for a language, and to explore alternative design choices during the calculation process.

We develop our approach in three stages. We begin with a first-principles approach using explicit
recursive definitions and inductive reasoning. We then simplify the calculations by adopting an
algebraic approach using a fold operator and its fusion property. Finally, we refine the methodology
further by using a constraint-based approach to solving and composing fusion preconditions.
To demonstrate the utility of our approach we present three examples of increasing complexity,
starting with a simple expression language with conditionals, then adding support for exception
handling, and finally considering a version of the lambda calculus.
All our programs and calculations are written in Haskell [Marlow et al. 2010], but the ideas

are applicable in any functional language. Because the calculations are the central focus, they are

Authors’ Contact Information: Zac Garby, University of Nottingham, Nottingham, United Kingdom, zac.garby@nottingham.
ac.uk; Patrick Bahr, IT University of Copenhagen, Copenhagen, Denmark, paba@itu.dk; Graham Hutton, University of
Nottingham, Nottingham, United Kingdom, graham.hutton@nottingham.ac.uk.

HTTPS://ORCID.ORG/0009-0007-3441-3646
HTTPS://ORCID.ORG/0000-0003-1600-8261
HTTPS://ORCID.ORG/0000-0001-9584-5150
https://orcid.org/0009-0007-3441-3646
https://orcid.org/0000-0003-1600-8261
https://orcid.org/0000-0001-9584-5150

2 Zac Garby, Patrick Bahr, and Graham Hutton

typically presented in detail rather than being compressed or omitted. Haskell code for each of the
examples is freely available online as supplementary material.

2 Positivity Checking
Type checking is an example of the general idea of static analysis [Nielson et al. 1999], which seeks
to reason about the behaviour of programs without executing them. Prior to considering type
checking, we first consider a simpler example, to illustrate how a static analysis can be calculated
from a specification of its behaviour using equational reasoning techniques.

Consider a simple type of arithmetic expressions built up from integer values using an addition
operator, together with a semantics that evaluates an expression to an integer:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Suppose now that we wish to define a function isPos :: Expr → Bool that decides if an expression is
positive, without evaluating the expression. The desired behaviour is as follows:

isPos e ⇒ eval e > 0

That is, if an expression is classified as positive, then evaluation should give a positive result. Note
that the specification is an implication rather than an equivalence, because in general it may not be
possible to decide if an expression is positive without evaluating it.

To calculate a definition for isPos, we proceed by induction on the expression e. In each case, we
start with the right-hand side of the specification, eval e > 0, and seek to strengthen it to something
of the form isPos e by defining a suitable clause for the function in this case.

Case: Val n

eval (Val n) > 0
⇔ { applying eval }
n > 0

⇔ { define: isPos (Val n) = n > 0 }
isPos (Val n)

Case: Add x y

eval (Add x y) > 0
⇔ { applying eval }
eval x + eval y > 0

⇐ { addition preserves positivity }
eval x > 0 ∧ eval y > 0

⇐ { induction hypotheses }
isPos x ∧ isPos y

⇔ { define: isPos (Add x y) = isPos x ∧ isPos y }
isPos (Add x y)

The key step in the calculation uses the fact that addition preserves positivity, i.e. n > 0 and m > 0
implies n +m > 0, to transform the term being manipulated into a form to which the induction
hypotheses can be applied. In conclusion, we have calculated the following definition:

The Calculated Typer 3

isPos :: Expr → Bool
isPos (Val n) = n > 0
isPos (Add x y) = isPos x ∧ isPos y

The approach that we will use to calculate a function determining the type of an expression is
similar to the above, but in a more sophisticated setting.

3 Conditional Expressions
We now consider an expression language built up from basic values using addition and conditional
operations, where a value is either an integer, a logical value, or an error value:

data Expr = Val Value | Add Expr Expr | If Expr Expr Expr

data Value = I Int | B Bool | Error

The semantics is defined using a function that evaluates an expression, with the error value being
returned if evaluation fails due to the expression being badly formed:

eval :: Expr → Value
eval (Val v) = v
eval (Add x y) = add (eval x) (eval y)
eval (If x y z) = cond (eval x) (eval y) (eval z)

The operations add and cond on values formalise that addition requires two integers to succeed,
while conditionals require a logical value to make a choice between two alternatives:

add :: Value → Value → Value
add (I n) (I m) = I (n +m)
add = Error

cond :: Value → Value → Value → Value
cond (B b) v w = if b then v else w
cond = Error

As we shall see, separating out these operations as named functions plays an important role in our
development, as it allows us to exploit properties of these functions.

We could also consider other approaches to handling badly formed expressions in the semantics,
such as replacing the explicit error value by the Maybe monad and defining an evaluation function
eval :: Expr → Maybe Value, or using a big-step operational approach and defining an evaluation
relation between expressions and values, which doesn’t require an error value as relations can be
partial. Here we choose to focus on the simple functional approach with an explicit error value, as
this mirrors the first-principles approach used by Bahr and Hutton [2015].

4 Type Checking
Evaluation fails if an expression is badly formed. In this case, badly formed means that it contains a
type error, such as attempting to add two values that are not integers. To formalise this idea, we first
define a simple language of types, comprising integers, logical values and an error type, together
with a function that abstracts from the contents of a value and returns its type:

data Type = INT | BOOL | ERROR
tval :: Value → Type
tval (I) = INT

4 Zac Garby, Patrick Bahr, and Graham Hutton

tval (B) = BOOL
tval Error = ERROR

Suppose now that we wish to define a function texp :: Expr → Type that returns the type of an
expression, with the error type being returned if the expression is badly formed. How can we
specify the desired behaviour of this function? A first attempt might be as follows:

texp e = tval (eval e)
This equation states that type checking an expression should give the same result as evaluating the
expression and taking the type of the resulting value. While this formulation captures the basic idea,
it is also too strong. To see why, consider the expression if True then 1 else False, here written in
Haskell syntax. Evaluating this expression gives the value 1, which is an integer. However, for the
type checker to determine this, it would need to use the condition’s value to decide which branch
applies. We do not want the type checker to observe values in this way, as in general this involves
evaluation, which is precisely what the type checker aims to abstract away.

The above specification would therefore be unsatisfiable under this constraint. The root cause is
that type checking is necessarily approximate rather than precise. We can formalise this idea by
defining an ordering relation on types via the following class declaration:

instance Ord Type where
(⩽) :: Type → Type → Bool
t ⩽ t′ = t == ERROR ∨ t == t′

That is, ERROR is defined to be less than any type, while any two other types are related by the
ordering if they are equal. As a Hasse diagram, the ordering can be illustrated as follows:

INT BOOL

ERROR

We can view this as an information ordering, where t ⩽ t′ means that the type t contains less
information than the type t′. This is the reverse of the usual subtype ordering, and is used to capture
the approximate nature of type checking. We will sometimes find it convenient to use the opposite
ordering ⩾, which is defined in the usual way by t ⩾ t′ iff t′ ⩽ t.

Note that the Ord class normally requires a total ordering, but for our purposes we only assume
the ⩽ ordering is partial and do not use properties or operations that depend on totality. Using this
ordering, the behaviour of type checking can then be captured as follows:

texp e ⩽ tval (eval e)
That is, type checking either returns a type error, or gives the same result as evaluating the given
expression and then taking the type of the resulting value.

Note that the above specification gives flexibility in how type checking is implemented, as there
may bemany possible definitions that satisfy the inequation, with some beingmore informative than
others. Indeed, the trivial definition texp e = ERROR that always gives a type error is perfectly valid.
The calculational methodology we develop naturally avoids such trivial solutions, and provides a
systematic means for designing type checkers that satisfy the above specification.

5 Calculating the Type Checker
Rather than first defining the type checking function and then proving it is correct, we can also use
the specification texp e ⩽ tval (eval e) as the basis for calculating the definition of the function texp.

The Calculated Typer 5

The calculation proceeds by induction on the expression e. For each case of e, we start with the
right-hand side of the specification, tval (eval e), and seek to strengthen it into something of the
form texp e by defining a suitable clause for the function in this case.

Case: Val v

tval (eval (Val v))
= { applying eval }
tval v

= { define: texp (Val v) = tval v }
texp (Val v)

Case: Add x y

tval (eval (Add x y))
= { applying eval }
tval (add (eval x) (eval y))

Now we appear to be stuck, as no further definitions can be applied. However, as we are performing
an inductive calculation, we can use the induction hypotheses for x and y, namely:

texp x ⩽ tval (eval x)
texp y ⩽ tval (eval y)

To use these hypotheses, it is clear that we need to distribute tval over the operation add on values in
the term tval (add (eval x) (eval y)) to give a term of the form add′ (tval (eval x)) (tval (eval y)),
for some operation add′ on types. That is, we need to solve the inequation:

tval (add (eval x) (eval y)) ⩾ add′ (tval (eval x)) (tval (eval y))
First of all, we generalise from the specific values eval x and eval y to arbitrary values:

tval (add v w) ⩾ add′ (tval v) (tval w)
Assuming this property then allows us to apply induction and complete the calculation:

tval (add (eval x) (eval y))
⩾ { assume: tval (add v w) ⩾ add′ (tval v) (tval w) }
add′ (tval (eval x)) (tval (eval y))
⩾ { induction hypothesis, assume: add′ is monotonic }
add′ (texp x) (texp y)

= { define: texp (Add x y) = add′ (texp x) (texp y) }
texp (Add x y)

The induction step also requires that add′ is monotonic, i.e. preserves the ordering on types:

t ⩽ t′ u ⩽ u′

add′ t u ⩽ add′ t′ u′

To discharge the assumptions made in the above calculation, it remains to define the operation
add′ ::Type → Type → Type, and show that it satisfies the required distributivity and monotonicity
properties. In fact, we can calculate the definition for add′ directly from its distributivity property
by starting with the left-hand side of this property, tval (add v w), and aiming to transform it into
the form of the right-hand side, add′ (tval v) (tval w):

6 Zac Garby, Patrick Bahr, and Graham Hutton

tval (add v w)
= { applying add }
tval (case (v,w) of

(I n, I m) → I (n +m)
(,) → Error)

= { distribution, tval is strict }
case (v,w) of

(I n, I m) → tval (I (n +m))
(,) → tval Error)

= { applying tval }
case (v,w) of

(I n, I m) → INT
(,) → ERROR

= { unapplying tval }
case (tval v, tval w) of

(INT , INT) → INT
(,) → ERROR

= { define: add′ INT INT = INT ; add′ = ERROR }
add′ (tval v) (tval w)

In summary, we have been able to establish an equality between the two sides, which is stronger
than the inequality that was required, and have therefore calculated the following definition:

add′ :: Type → Type → Type
add′ INT INT = INT
add′ = ERROR

That is, adding two integers gives an integer, while adding anything else gives a type error. We
can show that add′ is monotonic by considering monotonicity in each argument separately. For
example, we can show monotonicity in the first argument as follows:

add′ t u ⩽ add′ t′ u
⇔ { applying ⩽ }
add′ t u == ERROR ∨ add′ t u == add′ t′ u

⇐ { unapplying add′ }
t == ERROR ∨ add′ t u == add′ t′ u

⇐ { extensionality }
t == ERROR ∨ t == t′

⇔ { unapplying ⩽ }
t ⩽ t′

The key step here is the second one, where we use the fact that add′ returns an error if its first
argument is an error. Monotonicity in the second argument follows similarly, because the definition
for operation add′ is symmetric in its two arguments.

Case: Cond x y z
This case proceeds in a similar manner to the case for addition, by assuming a distributivity

property that allows the induction hypotheses to be applied:

The Calculated Typer 7

tval (eval (Cond x y z))
= { applying eval }
tval (cond (eval x) (eval y) (eval z))
⩾ { assume: tval (cond c v w) ⩾ cond′ (tval c) (tval v) (tval w) }
cond′ (tval (eval x)) (tval (eval y)) (tval (eval z))
⩾ { induction hypotheses, assume: cond′ is monotonic }
cond′ (texp x) (texp y) (texp z)

= { define: texp (Cond x y z) = cond′ (texp x) (texp y) (texp z) }
texp (Cond x y z)

We can then calculate the definition for cond′ from its distributivity property by starting with the
left-hand side, and aiming for the right-hand side:

tval (cond c v w)
= { applying cond }
tval (case c of
B b → if b then v else w

→ Error)
= { distribution, tval is strict }
case c of
B b → if b then tval v else tval w

→ tval Error
= { applying tval }
case c of
B b → if b then tval v else tval w

→ ERROR
⩾ { lemma below, case is monotonic }
case c of
B b → if tval v == tval w then tval v else ERROR

→ ERROR
= { unapplying tval }
case (tval c) of
BOOL → if tval v == tval w then tval v else ERROR

→ ERROR
= { define: cond′ BOOL t t′ = if t == t′ then t else ERROR; cond′ = ERROR }
cond′ (tval c) (tval v) (tval w)

The key step here is the following lemma, which allows us to replace a conditional that depends on
a logical value by a conditional that only depends on the types in the branches:

(if b then t else t′) ⩾ (if t == t′ then t else ERROR)

We can prove this lemma by case analysis on the logical value t == t′. If this value is true, the
lemma simplifies to (if b then t else t) ⩾ t, which in turn simplifies to t ⩾ t assuming b
is well-defined, which is then true by reflexivity. If t == t′ is false, the lemma simplifies to
(if b then t else t′) ⩾ ERROR, which is true because ERROR is the smallest type by definition.

8 Zac Garby, Patrick Bahr, and Graham Hutton

In summary, we have calculated the following definition for the operation cond′ on types, which
formalises the idea that a conditional expression requires a logical value and two branches that
have the same type, otherwise it gives a type error:

cond′ :: Type → Type → Type → Type
cond′ BOOL t t′ = if t == t′ then t else ERROR
cond′ = ERROR

Showing that cond′ is monotonic on types proceeds in a similar manner to the function add′, using
the fact that cond′ preserves type errors in all arguments.
Putting everything together, we have calculated the following definition for the type checking

function texp in terms of newly defined operations add′ and cond′ on types:

texp :: Expr → Type
texp (Val v) = tval v
texp (Add x y) = add′ (texp x) (texp y)
texp (If x y z) = cond′ (texp x) (texp y) (texp z)
add′ :: Type → Type → Type
add′ INT INT = INT
add′ = ERROR

cond′ :: Type → Type → Type → Type
cond′ BOOL t t′ = if t == t′ then t else ERROR
cond′ = ERROR

6 Algebraic Approach
An important aspect of our development above was the use of auxiliary operations add and cond on
values, and the introduction of operations add′ and cond′ on types. In particular, separating these
out as named functions allowed us to state and exploit algebraic properties of these operations,
namely distributivity and monotonicity, to simplify and guide our calculations.

However, we can take the algebraic approach further, and there are benefits from doing so. The
starting point is to define a fold operator for expressions [Meijer et al. 1991], which takes the
operation to apply for each form of expression as a parameter in the definition:

folde :: (Value → a) → (a → a → a) → (a → a → a → a) → Expr → a
folde val add cond = f
where
f (Val v) = val v
f (Add x y) = add (f x) (f y)
f (If x y z) = cond (f x) (f y) (f z)

Using this operator, we can then redefine evaluation and type checking in a more concise manner
by simply supplying the appropriate operations for values, addition and conditionals:

eval :: Expr → Value
eval = folde id add cond

texp :: Expr → Type
texp = folde tval add′ cond′

The Calculated Typer 9

The fold operator also has a useful fusion property, which allows a function h that satisfies suitable
distributivity, or homomorphism properties to be fused together with a fold using one collection of
operations, val, add and cond, to give a fold over another collection, val′, add′ and cond′. In our
setting, we use the following variant of fusion where equality = is replaced by a pre-order ⩾, under
which the operations add′ and cond′ are required to be monotonic:

h (val x) ⩾ val′ x
h (add x y) ⩾ add′ (h x) (h y)

h (cond x y z) ⩾ cond′ (h x) (h y) (h z)
h (folde val add cond e) ⩾ folde val′ add′ cond′ e

This fusion property can be proved by straightforward induction on expressions. It now becomes
evident that the correctness of type checking is just an application of fusion. In particular, the
specification tval (eval e) ⩾ texp e can now be expanded to:

tval (folde id add cond e) ⩾ folde tval add′ cond′ e

Hence, by fusion, this property is true if the operations add′ and cond′ are monotonic, and the
function tval satisfies the following homomorphism properties:

tval (id x) ⩾ tval x

tval (add x y) ⩾ add′ (tval x) (tval y)
tval (cond x y z) ⩾ cond′ (tval x) (tval y) (tval z)

The first property is trivially true by reflexivity, while the second and third lead to the same
calculations and resulting definitions for add′ and cond′ as shown in the previous section.

In conclusion, using an algebraic approach allows the type checking function texp ::Expr → Type
to be obtained in a more principled manner than previously. In particular, using the the fold
operation and its associated fusion property makes explicit the key property required for the type
checking function to be correct, namely that the function tval :: Value → Type is a homomorphism
between basic operations on values (add and cond) and those on types (add′ and cond′).

7 Constraint Approach
As shown in the previous section, the correctness of type checking depends on certain homomor-
phism properties. For example, for conditionals we must establish that:

tval (cond x y z) ⩾ cond′ (tval x) (tval y) (tval z)

Earlier we showed how this property can be used as the basis for calculating the definition for the
operation cond′ on types. However, an unsatisfactory aspect of the calculation was that it required
‘inventing’ the key lemma that makes the calculation work:

if b then t else t′ ⩾ if t == t′ then t else ERROR

However, there is another approach to calculating the definition for cond′ that is both simpler and
avoids the need to invent a lemma. The approach is based on using the homomorphism property
that specifies the desired behaviour of cond′ to derive a number of simpler constraints, which can
then be solved collectively to give a definition for cond′ itself.

We begin by observing that the operation cond on values is defined by case analysis on its first
argument. We then proceed by considering all four possible cases of this argument, and simplifying
the homomorphism property for conditionals in each of these cases.

Case: x = B True

10 Zac Garby, Patrick Bahr, and Graham Hutton

tval (cond (B True) y z) ⩾ cond′ (tval (B True)) (tval y) (tval z)
⇔ { applying cond, tval }
tval y ⩾ cond′ BOOL (tval y) (tval z)

⇐ { generalising to arbitrary types }
t ⩾ cond′ BOOL t t′

Case: x = B False

tval (cond (B False) y z) ⩾ cond′ (tval (B False)) (tval y) (tval z)
⇔ { applying cond, tval }
tval z ⩾ cond′ BOOL (tval y) (tval z)

⇐ { generalising to arbitrary types }
t′ ⩾ cond′ BOOL t t′

Case: x = I n

tval (cond (I n) y z) ⩾ cond′ (tval (I n)) (tval y) (tval z)
⇔ { applying cond, tval }
tval Error ⩾ cond′ INT (tval y) (tval z)

⇔ { applying tval }
ERROR ⩾ cond′ INT (tval y) (tval z)

⇐ { generalising to arbitrary types }
ERROR ⩾ cond′ INT t t′

Case: x = Error

tval (cond Error y z) ⩾ cond′ (tval Error) (tval y) (tval z)
⇔ { applying cond, tval }
tval Error ⩾ cond′ ERROR (tval y) (tval z)

⇔ { applying tval }
ERROR ⩾ cond′ ERROR (tval y) (tval z)

⇐ { generalising to arbitrary types }
ERROR ⩾ cond′ ERROR t t′

The above reasoning shows that the following four constraints for the operation cond′ are together
sufficient to satisfy the homomorphism property for conditionals:

cond′ BOOL t t′ ⩽ t

cond′ BOOL t t′ ⩽ t′

cond′ INT t t′ ⩽ ERROR

cond′ ERROR t t′ ⩽ ERROR

The last two constraints have a unique solution, given by defining cond′ INT t t′ = ERROR and
cond′ ERROR t t′ = ERROR, because ERROR is the smallest type. In turn, if we assume a greatest
lower bound operator ⊓ on types, then the first two constraints are together equivalent to

cond′ BOOL t t′ ⩽ t ⊓ t′

by the universal property of greatest lower bounds:

x ⩽ y and x ⩽ z iff x ⩽ y ⊓ z

The Calculated Typer 11

Hence, we can define cond′ BOOL t t′ = t ⊓ t′ as the optimal, i.e. greatest or most informative,
solution to the first two constraints. Putting all of the above reasoning together, we conclude that
the cond′ operation can be defined by the following three equations,

cond′ BOOL t t′ = t ⊓ t′

cond′ INT t t′ = ERROR
cond′ ERROR t t′ = ERROR

which can then be simplified by using the wildcard pattern to combine the last two cases:

cond′ BOOL t t′ = t ⊓ t′

cond′ = ERROR

For the ordering relation ⩽ on types that we are using, where t ⩽ t′ iff t = ERROR or t = t′, the
greatest lower bound operator is defined simply as:

(⊓) :: Type → Type → Type
t ⊓ t′ = if t == t′ then t else ERROR

In summary, we have shown how the previous definition for the cond′ operation can be calculated
in a principled manner that does not require the invention of a lemma:

cond′ :: Type → Type → Type → Type
cond′ BOOL t t′ = if t == t′ then t else ERROR
cond′ = ERROR

The same kind of constraint-based reasoning can also be used to calculate the operation add′ on
types from the homomorphism property that it must satisfy:

tval (add x y) ⩾ add′ (tval x) (tval y)

The operation add on values is defined by case analysis on its two arguments, so we proceed by
considering the two cases for the definition separately.

Case: x = I n and y = I m

tval (add (I n) (I m)) ⩾ add′ (tval (I n)) (tval (I m))
⇔ { applying add, tval }
tval (I (n +m)) ⩾ add′ INT INT

⇔ { applying tval }
INT ⩾ add′ INT INT

Case: x ≠ I n or y ≠ I m

tval (add x y) ⩾ add′ (tval x) (tval y)
⇔ { applying add }
tval Error ⩾ add′ (tval x) (tval y)

⇔ { applying tval }
ERROR ⩾ add′ (tval x) (tval y)

⇐ { generalising to arbitrary types }
ERROR ⩾ add t t′, if t ≠ INT or t′ ≠ INT

12 Zac Garby, Patrick Bahr, and Graham Hutton

The above reasoning shows that the following two constraints for the operation add′ are together
sufficient to satisfy the homomorphism property for addition:

add′ INT INT ⩽ INT

add′ t t′ ⩽ ERROR if t ≠ INT or t′ ≠ INT

The optimal, i.e. greatest or most informative, solution to these inequations is to strengthen each to
an equality by defining add′ INT INT = INT and add′ t t′ = ERROR if t ≠ INT or t′ ≠ INT , which
can then be simplified using the wildcard pattern to give the following definition:

add′ :: Type → Type → Type
add′ INT INT = INT
add′ = ERROR

In conclusion, adopting a constraint-based approach to solving the required homomorphism
properties allows the basic type checking operations add′ and cond′ to be obtained in a simpler
way than previously, and in a manner that does not require inventing a lemma.

8 Composing Constraints
In this section we improve the constraint-based approach from the previous section, by showing
how type checking operations can be defined by directly composing their constraints. This approach
also ensures that the resulting operations are monotonic by construction, and provides additional
flexibility to handle more complex types in the next section.
We introduce and explain the compositional approach by considering the first constraint that

we derived for the operation cond′ on types in the previous section:

cond′ BOOL t t′ ⩽ t (1)

We will transform this constraint into an equivalent form that can be used to compose the definition
for cond′ directly. We proceed in a series of steps. First of all, we observe that under the assumption
that cond′ is monotonic, the above constraint is equivalent to:

cond′ s t t′ ⩽ t if s ⩽ BOOL (2)

That is, the explicit matching on BOOL in the original constraint is replaced by the side-condition
that the type of the first argument is bounded above by BOOL. To verify that (2) implies (1), we
simply take s = BOOL. The converse implication from (1) to (2) can be verified as follows:

cond′ s t t′

⩽ { monotonicity of cond′, assumption s ⩽ BOOL }
cond′ BOOL t t′

⩽ { assumption (1) }
t

As we shall see, formulating the constraint in terms of an upper bound on the first argument rather
than an equality will ensure that the derived definition for cond′ is indeed monotonic.
In the next step, we transform (2) into a form that removes the need for s ⩽ BOOL as a side

condition, by integrating it into the constraint itself. To achieve this, we extend the language of

The Calculated Typer 13

types with a greatest element, which we write as TOP :

TOP

INT BOOL

ERROR

The new element TOP is only needed for the purpose of calculation. Indeed, from our specification
texp e ⩽ tval (eval e), it follows that TOP can never arise as the type of an expression, because it
is not in the image of the function tval that returns the type of values, and hence we can never
have an expression for which texp e = TOP as this would violate the specification. Using this new
element, we can now write constraint (2) in the following equivalent form:

cond′ s t t′ ⩽ if s ⩽ BOOL then t else TOP (3)

In this manner, the side condition s ⩽ BOOL is now integrated into the constraint itself. It is
easy to see that (3) is equivalent to (2), because whenever s ⩽ BOOL is false, it simplifies to
cond′ s t t′ ⩽ TOP , which is true by definition. This form of constraint will be used often, so we
find it convenient to introduce some notation to make such constraints more concise:

(⇛) :: Bool → Type → Type
b ⇛ t = if b then t else TOP

Using this notation, we can then write (3) simply as:

cond′ s t t′ ⩽ (s ⩽ BOOL) ⇛ t (4)

This completes the transformation process. Constraints produced by following the above steps may
at first sight seem rather unusual, but have a natural operational reading. For example, the derived
constraint (4) can be read as “if the first argument of a conditional could have type BOOL, then the
conditional as a whole could have the type of the first branch.” Note that the use of could have here
rather than has reflects the use of inclusion ⩽ rather than equality =.

We can apply the same transformation steps to the other constraints on cond′ that were calculated
in Section 7 to give the following equivalent set of constraints:

cond′ s t t′ ⩽ (s ⩽ BOOL) ⇛ t

cond′ s t t′ ⩽ (s ⩽ BOOL) ⇛ t′

cond′ s t t′ ⩽ (s ⩽ INT) ⇛ ERROR

cond′ s t t′ ⩽ (s ⩽ ERROR) ⇛ ERROR

Collectively, these constraints state that cond′ s t t′ is a lower bound for each of the terms on the
right-hand sides. Thus, we can obtain the optimal implementation of cond′ under these constraints
by simply defining it to be the greatest such lower bound:

cond′ :: Type → Type → Type → Type
cond′ s t t′ = ((s ⩽ BOOL) ⇛ t)

⊓ ((s ⩽ BOOL) ⇛ t′)
⊓ ((s ⩽ INT) ⇛ ERROR)
⊓ ((s ⩽ ERROR) ⇛ ERROR)

Taken together, this definition expresses that if the first argument of a conditional could have
type BOOL, then the type of the result could be that of either branch, while if the type of the

14 Zac Garby, Patrick Bahr, and Graham Hutton

first argument could be INT or a type error, then the result could be a type error. Note that the
component constraints are not disjoint, i.e. it is possible that more than one may apply, in which
case the results are combined by taking their greatest lower bound.

By following a similar transformation process, we can calculate the following set of constraints
for add′ that are equivalent to those developed in Section 7:

add′ t t′ ⩽ (t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT

add′ t t′ ⩽ (t ⩽ BOOL ∨ t′ ⩽ BOOL) ⇛ ERROR

In turn, we can immediately obtain the optimal definition of add′ under these constraints:

add′ :: Type → Type → Type
add′ t t′ = ((t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT)

⊓ ((t ⩽ BOOL ∨ t′ ⩽ BOOL) ⇛ ERROR)

That is, if both arguments of an addition could have type INT then the result could have type INT ,
while if either argument could have type BOOL then the result could be a type error.

By using ⇛ and ⊓ as building blocks for the definition of cond′ and add′, we ensure these
definitions are monotonic, as we shall consider shortly. In addition, ⇛ and ⊓ satisfy equational
laws, which we can use to simplify the definitions we have calculated:

(b ⇛ t) ⊓ (b ⇛ t′) = b ⇛ (t ⊓ t′) (⇛ -collect)
(b ⇛ t) ⊓ (b′ ⇛ t′) = b ⇛ t if b′ ⇒ b and t ⩽ t′ (⇛ -subsume)
(b ⇛ t) ⊓ (b′ ⇛ t) = (b ∨ b′) ⇛ t (⇛ -disjunct)

For example, using ⇛ -collect, we can simplify the first half of the definition of cond′:

((s ⩽ BOOL) ⇛ t) ⊓ ((s ⩽ BOOL) ⇛ t′) = (s ⩽ BOOL) ⇛ t ⊓ t′

Similarly, using ⇛ -subsume we can simplify the second half of cond′:

((s ⩽ INT) ⇛ ERROR) ⊓ ((s ⩽ ERROR) ⇛ ERROR) = (s ⩽ INT) ⇛ ERROR

Combining these two simplifications, we obtain the following equivalent definition of cond′:

cond′ s t t′ = ((s ⩽ BOOL) ⇛ t ⊓ t′)
⊓ ((s ⩽ INT) ⇛ ERROR)

By straightforward case analyses we can show that the definitions of cond′ and add′ calculated in
this section are equivalent to those in Section 7. The benefit of obtaining the definitions by directly
composing constraints in this manner is that the process is entirely systematic, and the resulting
definitions are by construction optimal. Moreover, as we shall see in the next section, this approach
will make it easier to deal with a richer language of types.

We have claimed above that the compositional definitions of cond′ and add′ are monotonic by
construction. To be more precise, any operation f 𝑥1 · · · 𝑥𝑛 = t on types is monotonic if the
result type t is a constant type such BOOL or INT , one of the argument types 𝑥𝑖 , or an arbitrary
combination of these formed using ⊓ and b ⇛ , where the condition b is in turn a combination of
comparisons 𝑥𝑖 ⩽ c of arguments 𝑥𝑖 with constant types c using conjunction and disjunction.

For example, cond′ uses the arguments t and t′ along with the constant type ERROR and combines
these using only ⊓ and ⇛ . Moreover, the conditions used by ⇛ only compare the argument s
with constant types. A similar observation can be made for add′.

The Calculated Typer 15

9 Exceptions
As a more sophisticated example of our approach to calculating type checkers, we now extend the
language of conditional expressions with support for throwing and catching an exception:

data Expr = Val Value | Add Expr Expr | If Expr Expr Expr | Catch Expr Expr

data Value = I Int | B Bool | Throw | Error

Informally, the new valueThrow represents an exception that has been thrown, while an expression
Catch x y behaves as the expression x unless evaluation of x results in an exception being thrown,
in which case the catch behaves as the handler expression y.

To define the semantics for this extended language as an evaluation function, we first extend the
fold operator with a new parameter to deal with the catch primitive:

folde val add cond catch = f
where
f (Val v) = val v
f (Add x y) = add (f x) (f y)
f (If x y z) = cond (f x) (f y) (f z)
f (Catch x y) = catch (f x) (f y)

Using this operator, we can then define an evaluation semantics for expressions by supplying the
appropriate operation for each form of expression:

eval :: Expr → Value
eval = folde id add cond catch

For values, we simply use the identity function id as previously. Addition still requires two integers
to succeed, but now also propagates an exception thrown in either argument:

add :: Value → Value → Value
add (I n) (I m) = I (n +m)
add Throw = Throw
add (I) Throw = Throw
add = Error

Note that the third clause in this definition isn’t simply add Throw = Throw, as this would mean
that add Error Throw = Throw, whereas under the normal left-to-right evaluation order for addition
we expect that an error in the first argument is propagated. Conditionals are treated in the same
way as previously, except that an exception thrown in the first argument is now propagated:

cond :: Value → Value → Value → Value
cond (B b) v w = if b then v else w
cond Throw = Throw
cond = Error

Finally, the new operation catch handles an exception thrown in the first argument by returning
the second, and otherwise simply returns the value of the first argument:

catch :: Value → Value → Value
catch Throw v = v
catch v = v

16 Zac Garby, Patrick Bahr, and Graham Hutton

9.1 Type Checking
We now seek to define a type checker for our language of exceptional expressions. We begin by
extending our previous language of types to include a type for an exception that has been thrown,
and similarly extend the definition for the function tval that returns the type of a value:

data Type = INT | BOOL | THROW | ERROR | TOP
tval :: Value → Type
tval (I) = INT
tval (B) = BOOL
tval Throw = THROW
tval Error = ERROR

The partial ordering on types is extended as shown below:

TOP

INT THROW BOOL

ERROR

As in Section 8, we include TOP as the greatest element in the language of types purely as a technical
device to calculate the definition of the type checker in a compositional manner. Our goal now is
to define a function texp :: Expr → Type that returns the type of an expression, with the desired
behaviour being captured in the same manner as previously:

texp e ⩽ tval (eval e)
To calculate tval, we exploit the algebraic approach developed in Section 6, and assume it is defined
by folding suitable operations on types, which themselves remain to be defined:

texp = folde val′ add′ cond′ catch′

The extended fold operator also has a fusion property as previously, which requires that the new
operator catch′ is monotonic and satisfies a homomorphism property. Hence, by fusion, to establish
texp e ⩽ tval (eval e) it suffices to show that the operations add′, cond′ and catch′ are monotonic,
and the function tval satisfies the following homomorphism properties:

tval (id x) ⩾ val′ x

tval (add x y) ⩾ add′ (tval x) (tval y)
tval (cond x y z) ⩾ cond′ (tval x) (tval y) (tval z)
tval (catch x y) ⩾ catch′ (tval x) (tval y)

We now aim to calculate definitions for the operations on types val′, add′, cond′ and catch′ that
satisfy the above properties. For values, the property val′ x ⩽ tval (id x) simplifies immediately to
val′ x ⩽ tval x, and hence the optimal definition for val′ is to simply define:

val′ :: Value → Type
val′ x = tval x

For addition, we proceed by case analysis on the argument values x and y. When both are integers,
the calculation is the same as previously, resulting in the constraint

add′ t t′ ⩽ (t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT

The Calculated Typer 17

The remaining cases lead to further constraints, as shown below:

Case: x = Throw

add′ (tval Throw) (tval y) ⩽ tval (add Throw y)
⇔ { applying add, tval }
add′ THROW (tval y) ⩽ THROW

⇐ { generalising to arbitrary type }
add′ THROW t′ ⩽ THROW

⇔ { monotonicity of add′ }
add′ t t′ ⩽ THROW , if t ⩽ THROW

⇔ { definition of ⇛ }
add′ t t′ ⩽ (t ⩽ THROW) ⇛ THROW

Case: x = I n and y = Throw

add′ (tval (I n)) (tval Throw) ⩽ tval (add (I n) Throw)
⇔ { applying add, tval }
add′ INT THROW ⩽ tval Throw

⇔ { applying tval }
add′ INT THROW ⩽ THROW

⇔ { monotonicity of add′ }
add′ t t′ ⩽ THROW , if t ⩽ INT and t′ ⩽ THROW

⇔ { definition of ⇛ }
add′ t t′ ⩽ (t ⩽ INT ∧ t′ ⩽ THROW) ⇛ THROW

Case: x = Error or x = B b or (x = I n and (y = Error or y = B b))

add′ (tval x) (tval y) ⩽ tval (add x y)
⇔ { applying add, tval }
add′ (tval x) (tval y) ⩽ ERROR

⇐ { generalising to arbitrary types }
add′ t t′ ⩽ ERROR, if t = ERROR or t = BOOL or (t = INT and (t′ = ERROR or t′ = BOOL))

⇔ { monotonicity of add′ }
add′ t t′ ⩽ ERROR, if t ⩽ ERROR or t ⩽ BOOL or (t ⩽ INT and (t′ ⩽ ERROR or t′ ⩽ BOOL))

⇔ { simplifying, ERROR ⩽ BOOL }
add′ t t′ ⩽ ERROR, if t ⩽ BOOL or (t ⩽ INT and t′ ⩽ BOOL)

⇔ { definition of ⇛ }
add′ t t′ ⩽ (t ⩽ BOOL ∨ (t ⩽ INT ∧ t′ ⩽ BOOL)) ⇛ ERROR

The final case above covers the remaining argument possibilities not covered by the other cases.
It is formulated in a positive manner by explicitly enumerating the remaining possibilities. This
ensures that the calculated definition of add′ is monotonic by construction.

18 Zac Garby, Patrick Bahr, and Graham Hutton

In conclusion, the above reasoning shows that the following four constraints for add′ are together
sufficient to satisfy the homomorphism property for addition:

add′ t t′ ⩽ (t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT

add′ t t′ ⩽ (t ⩽ THROW) ⇛ THROW

add′ t t′ ⩽ (t ⩽ INT ∧ t′ ⩽ THROW) ⇛ THROW

add′ t t′ ⩽ (t ⩽ BOOL ∨ (t ⩽ INT ∧ t′ ⩽ BOOL)) ⇛ ERROR

The optimal solution to these constraints is then obtained by defining the add′ operation as the
greatest lower bound of each of the right-hand sides:

add′ t t′ = ((t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT)
⊓ ((t ⩽ THROW) ⇛ THROW)
⊓ ((t ⩽ INT ∧ t′ ⩽ THROW) ⇛ THROW)
⊓ ((t ⩽ BOOL ∨ (t ⩽ INT ∧ t′ ⩽ BOOL)) ⇛ ERROR)

Using the ⇛ -disjunct law, we can then combine the second and third component to give a single
constraint that returns the type THROW , resulting in the following final definition:

add′ :: Type → Type → Type
add′ t t′ = ((t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT)

⊓ ((t ⩽ THROW ∨ (t ⩽ INT ∧ t′ ⩽ THROW)) ⇛ THROW)
⊓ ((t ⩽ BOOL ∨ (t ⩽ INT ∧ t′ ⩽ BOOL)) ⇛ ERROR)

For conditionals, there is only one new case to consider, which proceeds as follows:

Case: x = Throw

cond′ (tval Throw) (tval y) (tval z) ⩽ tval (cond Throw y z)
⇔ { applying cond, tval }
cond′ THROW (tval y) (tval z) ⩽ THROW

⇐ { generalising to arbitrary types }
cond′ THROW t t′ ⩽ THROW

⇔ { monotonicity of cond′ }
cond′ s t t′ ⩽ THROW , if s ⩽ THROW

⇔ { definition of ⇛ }
cond′ s t t′ ⩽ (s ⩽ THROW) ⇛ THROW

Together with the four constraints we already calculated in Section 8, we thus obtain the following
five constraints for cond′, which together ensure the required homomorphism property:

cond′ s t t′ ⩽ (s ⩽ BOOL) ⇛ t

cond′ s t t′ ⩽ (s ⩽ BOOL) ⇛ t′

cond′ s t t′ ⩽ (s ⩽ INT) ⇛ ERROR

cond′ s t t′ ⩽ (s ⩽ ERROR) ⇛ ERROR

cond′ s t t′ ⩽ (s ⩽ THROW) ⇛ THROW

We can then immediately obtain the optimal definition of cond′ that satisfies these constraints.
As in Section 8, we can then simplify the resulting definition by combining the first and second
component as well as the third and fourth, to give the following definition:

The Calculated Typer 19

cond′ :: Type → Type → Type → Type
cond′ s t t′ = ((s ⩽ BOOL) ⇛ t ⊓ t′)

⊓ ((s ⩽ INT) ⇛ ERROR)
⊓ ((s ⩽ THROW) ⇛ THROW)

Finally, for the catch operation that handles exceptions there are two cases to consider, namely
whether the first argument results in an exception being thrown or not:

Case: x = Throw

catch′ (tval Throw) (tval y) ⩽ tval (catch Throw y)
⇔ { applying catch, tval }
catch′ THROW (tval y) ⩽ tval y

⇐ { generalising to arbitrary type }
catch′ THROW t′ ⩽ t′

⇔ { monotonicity of catch′ }
catch′ t t′ ⩽ t′, if t ⩽ THROW

⇔ { definition of ⇛ }
catch′ t t′ ⩽ (t ⩽ THROW) ⇛ t′

Case: x = Error or x = B b or x = I n

catch′ (tval x) (tval y) ⩽ tval (catch x y)
⇔ { applying catch }
catch′ (tval x) (tval y) ⩽ tval x

⇐ { generalising to arbitrary types }
catch′ t t′ ⩽ t, if t = ERROR or t = BOOL or t = INT

⇔ { monotonicity of catch′ }
catch′ t t′ ⩽ t′′, if t ⩽ t′′ and t′′ ∈ {ERROR, BOOL, INT }

⇔ { definition of ⇛ }
catch′ t t′ ⩽ (t ⩽ t′′) ⇛ t′′, if t′′ ∈ {ERROR, BOOL, INT }

The above reasoning shows that the following four constraints for catch′ are together sufficient to
satisfy the homomorphism property for catching exceptions:

catch′ t t′ ⩽ (t ⩽ THROW) ⇛ t′

catch′ t t′ ⩽ (t ⩽ ERROR) ⇛ ERROR

catch′ t t′ ⩽ (t ⩽ BOOL) ⇛ BOOL

catch′ t t′ ⩽ (t ⩽ INT) ⇛ INT

From this we immediately obtain the optimal definition for catch′:

catch′ :: Type → Type → Type
catch′ t t′ = ((t ⩽ THROW) ⇛ t′)

⊓ ((t ⩽ ERROR) ⇛ ERROR)
⊓ ((t ⩽ BOOL) ⇛ BOOL)
⊓ ((t ⩽ INT) ⇛ INT)

In summary, using the techniques developed in previous sections, we have calculated a type checker
for the language of exceptional expressions. Moreover, each of the derived operations on types

20 Zac Garby, Patrick Bahr, and Graham Hutton

add′, cond′ and catch′ is built using the pattern described in Section 8 and is hence monotonic by
construction, so there is no need to manually check this property.

9.2 More Informative Types
The type checker developed in the previous section is correct, as it satisfies the specification
texp e ⩽ tval (eval e), but is less informative than we might wish. In this section we explain the
problem, and show how it can be solved by further exploiting algebraic properties.
The problem is with how exceptions are treated in conditional expressions. In particular, if we

have a conditional where one branch produces a regular value and the other branch throws an
exception, this will be regarded as being ill-typed. For example, if we represent the expression
if True then 1 else Throw in our language, then applying the type checking function texp will give
the result ERROR, meaning that the expression contains a type error. This behaviour arises from
the definition of the conditional operation on types:
cond′ s t t′ = ((s ⩽ BOOL) ⇛ t ⊓ t′)

⊓ ((s ⩽ INT) ⇛ ERROR)
⊓ ((s ⩽ THROW) ⇛ THROW)

Using this definition, the example expression has type
cond′ BOOL INT THROW = INT ⊓ THROW = ERROR

In contrast, in Haskell the similar expression if True then 1 else throw SomeException type checks
fine as an integer. In Haskell, this is achieved by giving the function throw a polymorphic type,
namely throw :: Exception e ⇒ e → a. However, this approach might be viewed as unsatisfactory,
as a polymorphic result type gives no indication that an exception may be thrown. It would be
preferable to solve the problem by making the type system more informative.

To deal with exceptions in a more informative way, the type system needs to be revised so that
INT ⊓ THROW is not simply ERROR. This can be achieved by adding a new type, say INT?, that
represents a value that could be either an integer or an exception, and similarly, a new type BOOL?
that represents a value that could be either a logical value or an exception:
data Type = INT | INT? | BOOL | BOOL? | THROW | ERROR | TOP
The desired behaviour of the new types is specified by the equations INT ⊓ THROW = INT? and
BOOL ⊓ THROW = BOOL?, which can be realised by refining the ordering on types to:

TOP

INT THROW BOOL

INT? BOOL?

ERROR

In this manner, we now have an extra level of types between the error type and the original value
types, which allow us to represent values that could potentially be exceptions.
We now consider what further changes are required. First of all, because the type of values is

unchanged, the function tval ::Value → Type does not require any modification. In turn, calculations
of the constraints for the type operations val′, add′, cond′ and catch′ also remain unchanged, because
the calculations only use positive facts about the ordering, and any ordering on types t ⩽ t′ in
the original definition of Type still holds in the extended definition. Finally, because we defined

The Calculated Typer 21

val′, add′, cond′ and catch′ as optimal solutions for the calculated constraints, these definitions
also satisfy the same constraints for the extended type, and are still the optimal solution. Hence,
the definition of the type checker texp :: Expr → Type can also remain unchanged.
In summary, due to the manner in which the type checker was constructed in the previous

section, no changes are required beyond modifying the language of types. That is, the existing
definitions can be used without modification with the extended notion of types. Crucially, however,
the type checker can now give more informative results. For example, type checking the expression
if True then 1 else Throw now gives the following result:

cond′ BOOL INT THROW = INT ⊓ THROW = INT?

That is, the type checker now indicates that the expression could either produce an integer or raise
an exception, whereas under the previous definition it simply resulted in a type error.
As another example, consider the expression catch (if True then 1 else Throw) 2. As shown

above, the conditional expression has type INT?, hence the whole expression has type:

catch′ INT? INT = INT ⊓ INT = INT

In this manner, the type checker recognises that catch allows us to recover from the possibility of
an exception being raised by the conditional and thereby guarantee to return an integer result.

10 Lambda Calculus
As a final example, we extend the expression language from Section 3 with lambda abstraction
and application. This requires a further generalisation to our methodology, to deal with the extra
complexities of the language. In doing so, we demonstrate that our techniques extend naturally to
more realistic languages with support for variables and bindings.

We use higher-order abstract syntax [Pfenning and Elliott 1988] to represent lambda abstractions,
as doing so keeps the semantics simple and avoids the need for variable environments:

data Expr = Val Value | Add Expr Expr | If Expr Expr Expr
| Abs (Expr → Expr) | App Expr Expr

For example, the expression App (Abs (𝜆x → Add x x)) (Val (I 1)) applies a doubling function to
an integer. As usual with higher-order abstract syntax, in an abstraction Abs f the function f must
be parametric, treating its argument purely symbolically and not performing case analysis on it.

For simplicity, we consider a first-order version of the lambda calculus in which abstractions can-
not be passed as arguments in applications. This choice ensures that evaluation always terminates,
and hence we can use the following type as our semantic domain:

data Value = I Int | B Bool | Fn (Value → Value) | Error
Again, this extends naturally from Section 3. The new value constructor Fn represents closures,
with the function argument capturing the semantic behaviour of an abstraction on values.

Enforcing that the language is first-order is achieved within the semantics, which as previously
is expressed by a function of type Expr → Value defined using a fold operator. However, defining
a suitable fold operator for the lambda calculus language is more involved, as Expr appears both
positively and negatively within the Abs constructor. In practice, this mixed variance use of the
expression type means that structural recursion alone is insufficient.
Fortunately, this issue is explored by Meijer and Hutton [1995] and Fegaras and Sheard [1996].

The former presents a solution, defining folds mutually with unfolds to handle the mixed variance.

folde val add cond abs app undo = f
where

22 Zac Garby, Patrick Bahr, and Graham Hutton

f (Val v) = val v
f (Add x y) = add (f x) (f y)
f (If x y z) = cond (f x) (f y) (f z)
f (Abs k) = abs (f ◦ k ◦ Val ◦ undo)
f (App x y) = app (f x) (f y)

In our setting, we only require unfolds which produce values, so we have simplified the setup by
defining the fold in terms of a function undo :: a → Value. Then we use the unfold, defined by
Val ◦ undo, as part of the fold over abstractions. The semantics can then be defined by:

eval :: Expr → Value
eval = folde id add cond abs app id

The operations for values, addition and conditionals are the same as in Section 3, while the new
operations for abstractions and applications are defined by:

abs :: (Value → Value) → Value
abs = Fn

app :: Value → Value → Value
app (Fn f) (I n) = f (I n)
app (Fn f) (B b) = f (B b)
app = Error

Note that app ensures the language is first-order by only allowing integers and logical values as
function arguments. Finally, undo is simply the identity function, as we already have a value. This
gives eval (Abs f) = Fn (eval ◦ f ◦ Val), in which the body of Fn lifts a value to an expression,
syntactically transforms it via the parametric function f , and then evaluates it back to a value.

Now we move on to type-checking. As previously, we start with a language of types that includes
one constructor for each form of value, plus a TOP element:

data Type = INT | BOOL | FN | ERROR | TOP
However, defining type checking as a fold is now problematic. In particular, we require an operation
undo′ :: Type → Value, but it is not clear how it should be defined. For example, what should we
return for undo′ INT? Following Fegaras and Sheard [1996], we solve this problem by adding a
new value constructor, called T , which allows us to abstractly reify types into values:

data Value = I Int | B Bool | Fn (Value → Value) | Error | T Type

We define tval (T t) = t. Now, the constructor T :: Type → Value can serve as undo′. Unfor-
tunately, our semantics is not equipped to suitably deal with T values. For example, at present
add (T INT) (I 1) simply gives an error value, due to the wildcard case add = Error .

Recall, however, that types are ordered, which induces a partial ordering ⩽ on values:

instance Ord Value where
(⩽) :: Value → Value → Bool
v ⩽ T t = tval v ⩽ t
v ⩽ w = v == w

This ordering provides us with two properties that we will exploit in our calculation: First, it
establishes a Galois connection between types and values. Secondly, we require that the operations
on values add, cond and so on preserve the ordering on values, i.e. they are monotonic. This
monotonicity requirement also allows us to derive the missing cases for T values in the definitions

The Calculated Typer 23

of add, cond etc. For example, consider the clause add (I n) (I m) = I (n + m) for addition.
Monotonicity requires that if I n ⩽ v and I m ⩽ w then add (I n) (I m) ⩽ add v w, from which
we can easily deduce the following additional cases for add:

add (T INT) (I) = T INT
add (I) (T INT) = T INT
add (T INT) (T INT) = T INT

That is, reified integer types are propagated, which is natural as they represent any integer value.
Similar reasoning for cond, abs and app provides a complete semantics for values that arise by
reifying types. For example, we can deduce that cond (T BOOL) v w = T (tval v ⊓ tval w).

The new fold operator satisfies a fusion property as previously, which in the case of abstraction
has a condition that must hold for any function f :: Expr → a:

h (val x) ⩾ val′ x
h (add x y) ⩾ add′ (h x) (h y)

h (cond x y z) ⩾ cond′ (h x) (h y) (h z)
h (abs (f ◦ Val ◦ undo)) ⩾ abs′ (h ◦ f ◦ Val ◦ undo′)

h (app x y) ⩾ app′ (h x) (h y)
h (folde val add cond abs app undo e) ⩾ folde val′ add′ cond′ abs′ app′ undo′ e

Fusion also requires that add′, cond′, abs′, app′ are monotonic. We now seek to calculate texp from
the specification tval (eval e) ⩾ texp e, using the assumption that texp is defined by folding suitable
operations on types. The cases for values, addition and conditionals are similar to those in Section 3,
so we begin with application. The first case, when x = Fn f and y = I n, begins as follows:

app′ (tval (Fn f)) (tval (I n)) ⩽ tval (app (Fn f) (I n))
⇔ { applying app, tval }
app′ (tval (Fn f)) INT ⩽ tval (f (I n))

⇔ { monotonicity of tval and f }
app′ (tval (Fn f)) INT ⩽ tval (f (T INT))

Monotonicity of tval follows from the value-type Galois connection. Moreover, for any result Fn f
of evaluating Abs g, we can show that f is monotonic from the assumption that g is parametric
and that add, cond, abs, app are monotonic. We may thus assume monotonicity of f above.

But now we seem to be stuck. In particular, if we were to view the above as a definition for app′,
the right-hand side would require us to know tval (f (T INT)), but tval (Fn f) is simply FN ,
giving us no such information. However, we can take a hint from similar situations arising in
compiler calculation [Bahr and Hutton 2015], and carry the required additional information within
the constructor. That is, if we extend the FN constructor to hold a Type argument, we can proceed:

app′ (tval (Fn f)) INT ⩽ tval (f (T INT))
⇔ { redefine: tval (Fn f) = FN (tval (f (T INT))) }
app′ (FN (tval (f (T INT)))) INT ⩽ tval (f (T INT))

⇐ { generalise to arbitrary type }
app′ (FN t) INT ⩽ t

⇔ { monotonicity of app′ }
app′ (FN t) u ⩽ t, if u ⩽ INT

⇔ { definition of ⇛ }
app′ (FN t) u ⩽ (u ⩽ INT) ⇛ t

24 Zac Garby, Patrick Bahr, and Graham Hutton

Playing the same trick with the second case for application, x = Fn f and y = B b, we discover that
we need a second Type argument for FN , with the type of function values then defined by:

tval (Fn f) = FN (tval (f (T INT))) (tval (f (T BOOL)))
In summary, we can derive the following two initial constraints for application:

app′ (FN t t′) u ⩽ (u ⩽ INT) ⇛ t

app′ (FN t t′) u ⩽ (u ⩽ BOOL) ⇛ t′

Due to the lack of polymorphism, the function type FN t t′ is essentially an intersection type
(INT → t, BOOL → t′), which separately describes a function’s behaviour when applied to an
integer or logical value, respectively. Hence, the two constraints above express that if the argument
of a function application could have type INT , then the application as a whole could have the
type for the first argument of FN , and similarly, if the argument could have type BOOL, then the
application could have the type of the second argument of FN .
The third constraint for application arises by considering x = Fn f and y = Fn g, and utilising

the pointwise ordering FN t t′ ⩽ FN u u′ iff t ⩽ u and t′ ⩽ u′, from which we obtain:

app′ (FN t t′) u ⩽ (u ⩽ FN TOP TOP) ⇛ ERROR

Under the pointwise ordering, this constraint expresses that if the argument of a function application
could have a function type, then the application could have a type error. The final case for application,
when x ≠ Fn f , is straightforward, and yields the following constraint:

app′ t u ⩽ ERROR if t ∈ { INT , BOOL, ERROR, TOP }

Additional defining clauses of app, such as app (Fn f) (T INT), which we obtained from the value
ordering, do not result in any additional constraints. They are subsumed automatically by the above
four. This convenient general fact also holds for the other cases too.
We now move on to abstraction. Because abs only has one defining equation, only one case is

needed, and the calculation proceeds by simply unfolding definitions:

abs′ (tval ◦ f ◦ Val ◦ T) ⩽ tval (abs (f ◦ Val ◦ id))
⇔ { applying abs, id }
abs′ (tval ◦ f ◦ Val ◦ T) ⩽ tval (Fn (f ◦ Val))

⇔ { applying of tval }
abs′ (tval ◦ f ◦ Val ◦ T) ⩽ FN (tval (f (Val (T INT)))) (tval (f (Val (T BOOL))))

⇐ { generalising to arbitrary function on types }
abs′ g ⩽ FN (g INT) (g BOOL)
Finally, we can then compose the constraints that we have derived for each of the operations on

types, resulting in the following general definitions:

add′ :: Type → Type → Type
add′ t t′ = ((t ⩽ INT ∧ t′ ⩽ INT) ⇛ INT)

⊓ ((t ⩽ BOOL ∨ t′ ⩽ BOOL ∨ t ⩽ FN TOP TOP ∨ t′ ⩽ FN TOP TOP) ⇛ ERROR)
cond′ :: Type → Type → Type → Type
cond′ t u u′ = ((t ⩽ BOOL) ⇛ u ⊓ u′)

⊓ ((t ⩽ INT ∨ t ⩽ FN TOP TOP) ⇛ ERROR)
abs′ :: (Type → Type) → Type
abs′ f = FN (f INT) (f BOOL)

The Calculated Typer 25

app′ :: Type → Type → Type
app′ (FN t t′) u = ((u ⩽ INT) ⇛ t)

⊓ ((u ⩽ BOOL) ⇛ t′)
⊓ ((u ⩽ FN TOP TOP) ⇛ ERROR)

app′ t u = ERROR

In summary, we have demonstrated how our methodology extends to more complex languages
with variables and binders. To achieve this we used a more powerful fold operator and associated
fusion property, together with an ordering on values as well as types. We also exploited the idea of
extending the language of types during the calculation process, inspired by a similar approach that
has been used in previous work on compiler calculation.

11 Related Work
The idea of calculating a type checker from a single inequality is inspired by the compiler calculation
methodology of Bahr and Hutton [2015]. This approach starts with specification that expresses
the correctness of a compiler as a single equation relating the semantics of source programs with
the target code. From this specification the compiler is then calculated using equational reasoning
techniques. Similarly to the type checker calculation presented in this article, later versions of
this compiler calculation approach also used an inequation as the specification [Bahr and Hutton
2020]. However, the calculation of type checkers has required further refinement to structure the
calculation: using an ordered version of fold fusion to calculate inequality constraints, and a means
to obtain an optimal definition for these constraints in a compositional manner.
A type checker is a special case of an abstract interpreter [Cousot 1997]. The soundness of an

abstract interpreter 𝑓𝑎 with respect to a corresponding concrete interpreter 𝑓𝑐 is typically formulated
by a Galois connection, which consists of two inequalities, 𝑓𝑎 ◦ 𝛼 ⩽ 𝛼 ◦ 𝑓𝑐 and 𝛾 ◦ 𝑓𝑎 ⩽ 𝑓𝑐 ◦ 𝛾 , for
suitable abstraction and concretisation functions 𝛼 and 𝛾 . In our setting, the concrete interpreter 𝑓𝑐
is eval, the abstract interpreter 𝑓𝑎 is the type checker texp, and the abstraction function 𝛼 is tval.
Our methodology dispenses with the concretisation function 𝛾 , and also the second inequality.
The remaining single inequality suffices to capture the desired soundness property of the type
checker. While this simplifies the calculation process, it remains to be seen whether our approach
based on a single inequality generalises to non-terminating and higher-order languages. However,
there is reason for optimism, in particular because Bahr and Hutton [2015] have shown that the
compiler calculation technique of Meijer [1992] based on an adjunction, a generalisation of Galois
connections, can be simplified to a single equation by transforming the higher-order semantics of
the source language into first-order form by defunctionalisation.
Our calculation of a type checker for a language with exceptions naturally led to a type sys-

tem with checked exceptions [Goodenough 1975; Liskov and Snyder 1979], a type system feature
popularised in Java [Gosling et al. 1996]. Exceptions and exception handling are a special case of
algebraic effects and effect handling [Plotkin and Pretnar 2009]. Type and effect systems have been
proposed to check for the presence and proper handling of effects [Bauer and Pretnar 2013]. This
suggests further work to explore how such type and effects systems for algebraic effects can be
calculated using the kind of techniques presented in this article.

12 Conclusion and Further Work
In this article, we showed how the calculational approach to program construction can be applied
to the design of type checkers. In particular, starting from a specification that captures the desired
behaviour of a type checker, we showed how equational reasoning techniques can be used to derive
a correct-by-construction implementation in a principled, systematic manner.

26 Zac Garby, Patrick Bahr, and Graham Hutton

There are a number of possible avenues for further work. First of all, the language of types was
provided up front as part of the specification, but it would be interesting to calculate the types at
the same time as the type checker, in a similar manner to how Bahr and Hutton [2015] calculate
the language of code at the same time as a compiler. Indeed, we already touched on this idea in the
lambda calculus example in Section 10. Secondly, it is important to consider how the methodology
scales to more sophisticated source language and type system features, such as computational
effects, type constructors, and polymorphism. Thirdly, it would be interesting to explore how
the calculations can be formalised in a proof assistant, but based on previous experience we do
not expect this to be problematic. And finally, it would be interesting to calculate typing rules as
opposed to type checkers, and we already have some promising results in this area.

References
Roland Backhouse. 2003. Program Construction: Calculating Implementations from Specifications. John Wiley and Sons, Inc.
Patrick Bahr and Graham Hutton. 2015. Calculating Correct Compilers. Journal of Functional Programming 25 (2015).
Patrick Bahr and Graham Hutton. 2020. Calculating Correct Compilers II: Return of the Register Machines. Journal of

Functional Programming 30 (2020).
Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. In Algebra and Coalgebra in

Computer Science. Springer Berlin Heidelberg.
Patrick Cousot. 1997. Types as Abstract Interpretations. In Proceedings of the Symposium on Principles of Programming

Languages. ACM, Paris, France.
Leonidas Fegaras and Tim Sheard. 1996. Revisiting Catamorphisms over Datatypes with Embedded Functions (or, Programs

from Outer Space). In Proceedings of the Symposium on Principles of programming languages.
John B. Goodenough. 1975. Exception Handling: Issues and a Proposed Notation. Commun. ACM 18, 12 (1975).
James Gosling, Bill Joy, and Guy L. Steele. 1996. The Java Language Specification. Addison-Wesley Longman Publishing.
Barbara H. Liskov and Alan Snyder. 1979. Exception Handling in CLU. IEEE Transactions on Software Engineering 5, 6 (1979).
Simon Marlow et al. 2010. Haskell 2010 Language Report. Available online at https://www.haskell.org (2010).
Erik Meijer. 1992. Calculating Compilers. PhD Thesis. Katholieke Universiteit Nijmegen.
Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional Programming with Bananas, Lenses, Envelopes and

Barbed Wire. In Proceedings of the Conference on Functional Programming and Computer Architecture.
Erik Meijer and Graham Hutton. 1995. Bananas in Space: Extending Fold and Unfold to Exponential Types. In Proceedings of

the International Conference on Functional Programming Languages and Computer Architecture.
Flemming Nielson, Hanne Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer.
Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. ACM Sigplan Notices 23, 7 (1988).
Benjamin C. Pierce. 2002. Types and Programming Languages. The MIT Press.
Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems (Lecture

Notes in Computer Science, Vol. 5502). Springer Berlin Heidelberg.

https://www.haskell.org

	Abstract
	1 Introduction
	2 Positivity Checking
	3 Conditional Expressions
	4 Type Checking
	5 Calculating the Type Checker
	6 Algebraic Approach
	7 Constraint Approach
	8 Composing Constraints
	9 Exceptions
	9.1 Type Checking
	9.2 More Informative Types

	10 Lambda Calculus
	11 Related Work
	12 Conclusion and Further Work
	References

